
Project	2:	Adversarial	Search	
	

Deadlines	
• Parts	1-2	(individual)	due	[one	week	after	release]	
• Parts	1-4	(team)	due	[two	weeks	after	release]	

	
1.	Expectiminimax	Search	(10	pts)	
(Individual	and	team	scores	will	be	averaged	to	find	your	final	score)	
	
In	this	part	you	will	implement	and	experiment	with	expectiminimax	search.	
Ultimately	you	will	use	it	to	create	an	optimal	Tic-Tac-Toe	player.	
	
Minimax	search	
	
In	expectiminimax.py	there	is	a	function	stub	for	minimax.	Ultimately	you	will	
implement	the	full	algorithm,	with	alpha-beta	pruning.	For	now,	start	with	the	
basics:	implement	minimax	search	with	no	pruning.		
	
You	may	assume	that	problem	has	the	following	useful	methods:	

• getState()	–	gets	the	current	state	(the	initial	state,	at	first)	
• setState()	–	sets	the	current	state	(for	instance,	maybe	set	it	to	the	one	

you	are	evaluating)	
• getTurn()	–	returns	a	number	representing	whose	turn	it	is:	-1	for	min,	1	

for	max,	and	2	if	the	state	is	terminal	
• getSuccessors(state)	–	returns	a	list	of	successors	to	the	given	state	as	

4-tuples	in	the	following	form:	(next	state,	action	to	reach	that	state,	whose	
turn	it	is	in	that	state,	the	final	score	if	the	state	is	terminal).	The	last	item	
will	be	None	if	the	successor	state	is	not	terminal.	

	
The	function	should	fill	in	a	dictionary	that	will	represent	the	strategy	in	the	given	
game.	It	should	map	states	to	pairs.	The	first	item	should	be	an	optimal	move	in	the	
state	(there	may	be	more	than	one	–	you	should	return	the	first	optimal	move	in	the	
order	that	the	successors	are	given).	The	second	item	in	the	pair	should	be	the	
minimax	score	of	the	state.		
Note:	when	the	function	returns,	the	state	of	problem	should	be	the	same	as	it	was	
when	it	was	passed	in.	
	
You	should	not	assume	that	turns	always	alternate	between	the	min	and	max	
players	–	your	minimax	algorithm	should	check	in	each	node	whose	turn	it	is	and	be	
general	enough	to	handle	any	order	of	turns.	
	
You	may	test	your	minimax	algorithm	on	a	simple	example	using	gametree.py.		
	
Specifically,	if	you	run	



python3 gametree.py 
the	program	will	use	your	function	to	calculate	a	strategy	on	a	randomly	generated	
game	tree.	In	this	tree	there	are	two	actions.	The	nodes	marked	with	^	are	
maximizing	nodes	and	the	nodes	marked	with	V	are	minimizing	nodes.	The	utilities	
of	the	terminal	states	are	on	the	bottom.		
	
When	you	run	the	program	it	will	display	your	strategy	on	the	tree.	It	will	display	
the	minimax	value	under	each	node	and	also	mark	the	optimal	action	your	strategy	
assigns	to	each	node	by	marking	its	branch	with	#.	You	can	control	the	depth	of	the	
tree	with	the	-d	option.		
	
You	can	also,	if	you	wish,	specify	your	own	tree.	This	program	only	supports	game	
trees	where	each	level	of	the	tree	is	all	the	same	player’s	turn	(which	need	not	be	
true	in	general).	To	specify	a	tree,	you	need	to	give	a	turn	order	with	the	-t	option	
and	list	of	payoffs	at	the	leaves	with	the	-y	option.	For	instance,	to	specify	the	tree	
below,	you	would	use	the	command:	
	
python3 gametree.py -t 1 -1 1 -1 -y 1 3 1 1 -3 -1 -5 -3 -4 -1 -6 0 -7 0 1 -8 

	

	
	
Go	ahead	and	use	this	program	to	thoroughly	test	your	minimax	algorithm	by	
generating	trees	(randomly	or	manually)	and	checking	the	minimax	values	by	hand.		
	
Once	you	are	confident	in	your	minimax	implementation,	you	can	use	it	to	play	a	
perfect	game	of	Tic-Tac-Toe!	Run	
python3 tictactoe.py 
to	pit	your	minimax	agent	against	itself.	Note	that	to	keep	things	interesting,	the	
order	of	the	successor	states	in	the	search	is	randomized,	so	the	strategy	will	not	
always	be	the	same.	You	can	also	use	-o human	to	play	against	your	agent	yourself!	
	
Alpha-beta	pruning	
	
Now	add	alpha-beta	pruning	to	your	algorithm.	There	is	an	optional	parameter	to	
the	minimax	function	called	prune.	If	it	is	true,	your	algorithm	should	apply	alpha-
beta	pruning	(and	not	if	it	is	false!).	For	correct	output,	states	that	are	pruned	(i.e.	



not	expanded	at	all)	should	not	be	added	into	the	strategy	dictionary.	You	can	
solve	game	trees	with	your	alpha-beta	search	by	running	
python3 gametree.py -p 
The	output	will	not	display	branches	to	nodes	that	were	not	included	in	the	strategy	
(i.e.	not	expanded),	nor	will	it	display	minimax	values	for	them.	Once	again,	I	
recommend	that	you	perform	the	algorithm	by	hand	as	well	to	make	sure	that	your	
output	is	correct.	
	
If	you	run	
python3 tictactoe.py -p 
you	should	notice	a	substantial	speed-up	in	calculating	the	strategy.	For	instance,	
my	implementation	goes	from	30	seconds	to	1.5	seconds	(your	mileage	may	vary).	
	
Expectiminimax	
	
Now	fill	in	the	function	stub	named	expectiminimax.	It	should	allow	for	chance	
nodes	in	the	game	tree	as	well	as	max	and	min	nodes.	A	few	notes:	

• When	it	is	chance’s	turn,	getTurn	returns	0	(same	in	the	output	of	
getSuccessors).	

• You	may	assume	that	in	chance	nodes	the	actions	are	equally	likely.	In	other	
words,	the	score	at	a	chance	node	is	the	average	of	the	scores	of	its	children.	

• In	the	strategy	dictionary,	it	doesn’t	matter	what	optimal	move	you	give	to	a	
chance	node,	but	you	should	provide	the	correct	expectiminimax	score.	

• When	there	are	chance	nodes	in	the	tree,	pruning	is…more	complicated.	
Don’t	use	any	pruning	in	this	algorithm	(notice	there	is	no	prune	argument).	

	
You	can	test	your	algorithm	by	running	
python3 gametree.py -c 
That	will	generate	a	random	game	tree	that	includes	chance	nodes	and	use	
expectiminimax	to	solve	it	(chance	nodes	are	represented	with	O).	In	this	program	
chance	nodes	are	assumed	to	give	either	outcome	with	equal	probability.	Again,	I	
highly	recommend	that	you	do	some	examples	by	hand	and	verify	the	output.	
	
If	you	run	
python3 tictactoe.py -o random 
you	will	see	a	Tic-Tac-Toe	game	between	your	minimax	agent	and	an	agent	that	
takes	random	actions.		
	
You	can	also	use	alpha-beta	pruning	against	the	random	opponent,	as	long	as	you	
run	the	search	at	every	step	of	the	game.	To	do	that,	run	
python3 tictactoe.py -o random -p -e 
	
Finally,	if	you	run	
python3 tictactoe.py -o random -s expectimax 
the	agent	will	use	expectimax,	modeling	the	opponent	with	chance	nodes	rather	
than	minimizing	nodes	(in	this	case	that	is	an	accurate	assumption!).	



	
2.	Connect	Four	Agent	(10	pts)	
(Individual	and	team	scores	will	be	averaged	to	find	your	final	score)	
	
Now	you’ll	try	your	hand	at	a	bigger	game	that	would	be	far	harder	to	solve	
outright:	Connect	Four	(pictured	below).	In	the	game,	players	take	turns	dropping	
checkers	into	the	7x6	grid.	Whoever	gets	four	checkers	in	a	row	first	wins	the	game.	
You	can	play	a	game	of	Connect	Four	against	an	agent	that	takes	random	actions:	
python3 connectfour.py -p1 human 
	

	
	
In	Tic-Tac-Toe	the	maximum	depth	of	the	tree	is	9,	and	the	branching	factor	shrinks	
as	the	tree	gets	deeper.	In	Connect	Four,	games	can	take	42	moves	to	finish,	and	in	
many	branches	all	7	actions	(one	for	each	column)	remain	available	until	nearly	the	
end.	As	such,	there	are	approximately	7!" = 3.1 × 10#$	nodes	in	the	game	tree!	I’ve	
gone	ahead	and	implemented	depth-limited	heuristic	minimax	for	you	in	
heuristicminimax.pyc1.	Your	job	is	to	implement	the	heuristic	evaluation	function!	
	
Heuristic	Evaluation	Function	
	
The	file	c4agent.py	will	get	you	started.	You	should	fill	in	the	C4HeuristicEval	
class,	particularly	the	eval	method,	which	should	take	a	state	and	return	a	heuristic	
value	representing	an	estimate	of	who	will	win	once	the	game	is	in	this	state	(more	
negative	means	the	minimizing	player	is	more	likely	to	win,	more	positive	means	
the	maximizing	player	is	more	likely	to	win).	
	
When	it	is	ready	to	test	you	can	pit	your	agent	against	the	random	agent	like	this:	
python3 connectfour.py -p1 c4agent.py 
This	will	use	your	heuristic	in	depth	4	minimax	search.	Using	the	-t	option	you	can	
have	the	program	play	multiple	games	in	a	row.	For	instance,	if	you	use	-t 10,	10	

	
1	Since	this	is	a	.pyc	file,	you	will	not	be	able	to	see	the	source	code.	You	are	not	permitted	to	
decompile	or	otherwise	extract	the	source	code	from	this	file.	If	you	get	an	“incorrect	magic	number”	
error,	you	need	to	update	Python	to	the	latest	version.	This	file	is	provided	for	your	convenience,	but	
in	a	pinch	you	can	always	test	your	agent	with	the	autograder	to	see	the	official	results.	



games	will	be	played	with	your	agent	as	player	1,	and	then	10	games	will	be	played	
with	your	agent	as	player	2.	
	
Move	Order	Heuristic	
	
Recall	from	class	that	considering	better	successors	first	leads	to	more	pruning,	
which	saves	time.	You	can’t	know	for	sure	which	successor	is	best	(otherwise,	why	
are	we	doing	this??),	but	some	heuristic	orderings	are	likely	to	be	better	than	others.	
In	c4agent.py	fill	in	the	eval	method	of	the	C4OrderHeuristic	class.	It	takes	a	
state	and	should	return	a	list	of	the	successors	of	that	state	in	whatever	order	you	
choose.	Right	now,	it	just	returns	the	successors	in	the	default	order	(each	action	is	a	
column,	ordered	left	to	right).	A	good	move	order	heuristic	can	reduce	the	number	
of	nodes	expanded	during	search	and	can	also	have	a	(modest)	effect	on	the	quality	
of	the	strategy	as	well.	
	
Benchmark	
	
To	help	measure	your	progress,	I	have	also	supplied	a	basic	agent	of	my	own	in	
c4benchmarkagent.pyc	(another	.pyc	file,	see	footnote	1).	This	agent	also	uses	
minimax	search	with	a	depth	of	4.	It	explores	successor	states	in	a	random	order.	
The	heuristic	evaluation	function	counts	the	number	of	columns	with	a	black	tile	on	
top	(call	that	number	b)	and	the	number	of	columns	with	a	red	tile	on	top	(call	that	
number	r).	Then	the	value	it	gives	a	state	is	(𝑏 − 𝑟)/7.	This	essentially	encodes	that	
if	black	is	on	top	of	more	columns	then	black	is	more	likely	to	win	and	if	red	is	on	
top	of	more	columns	then	red	is	more	likely	to	win.	The	difference	is	divided	by	7	in	
order	to	keep	the	heuristic	value	between	-1	and	1.	This	ensures	that	a	winning	
configuration	is	always	more	desirable	than	a	non-winning	configuration	with	a	
high	heuristic	value.	You	may	pit	your	agent	against	mine	like	this:	
python3 connectfour.py -p1 c4agent.py -p2 c4benchmarkagent.pyc 
	
Some	of	your	score	for	this	part	depends	on	how	often	your	agent	wins	against	
mine.	I	will	run	the	above	with	-t 25	and	assign	points	based	on	the	number	of	
times	your	agent	wins	or	draws.	
	

Wins	+	draws	(out	of	50)	 Max	points:	
20	–	24	 2	
25	–	29	 4	
30	–	34	 6	
35	–	39	 8	
40	–	50	 8+1	bonus	

	
Some	of	your	score	depends	on	how	much	your	move	order	heuristic	improves	on	
the	number	of	nodes	expanded.	If	you	use	the	-d1	option	the	program	will	perform	
the	search	for	player	1	at	each	step	with	both	your	heuristic	and	the	default	order	
and	report	the	average	number	of	nodes	expanded	for	both	(the	actual	action	is	



taken	from	the	search	using	your	heuristic).	You	can	do	the	same	for	player	2	with	-
d2.	You	will	receive	points	according	to	how	much	your	move	order	improves	the	
average	number	of	nodes	expanded	during	the	above	experiment.		
	

%	change	with	heuristic	 Max	points:	
5%	–	10%	 1	
>	10%	 2	

	
You	may	receive	fewer	than	the	maximum	number	of	points	if:	

• your	heuristics	are	nonsensical	(they	should	represent	reasonable	attempts	
to	estimating	the	winner	from	a	given	state	or	to	put	good	actions	first),	or	

• your	code	is	notably	buggy	or	poorly	written.	
	
Notes	and	hints	
	

• The	program	will	enforce	a	2-second	time	limit	on	each	turn.	If	your	agent	
times	out,	then	a	random	action	will	be	taken	for	it.	The	2-second	limit	also	
applies	to	your	agent’s	constructor,	so	don’t	go	trying	to	sneak	in	a	bunch	of	
expensive	pre-computation!	I	don’t	think	you	are	likely	to	hit	this	limit,	but	
the	autograder	script	is	the	final	arbiter	of	the	time	limit	so	if	you	think	you	
are	close	to	the	edge,	test	it	there	to	be	sure!	

• As	we	discussed	in	class,	a	common	strategy	for	creating	heuristic	evaluation	
functions	is	to	make	a	weighted	combination	of	several	features	of	the	game	
state.	Think	about	what	patterns	might	be	important	for	telling	whether	a	
board	is	good	or	bad	for	the	agent,	assign	them	weight	(importance),	and	add	
them	together.	

• The	most	helpful	methods	in	ConnectFour	for	your	heuristics	are	probably	
getTile(row, column)	and	getHeights().	Note	that	in	this	game	row	
0	is	the	bottom	row	(rather	than	the	top,	as	in	Tic-Tac-Toe).	

• Make	sure	that	your	heuristic	values	are	between	-1	and	1,	otherwise	search	
might	prefer	non-winning	nodes	over	winning	nodes!	Other	than	that,	the	
magnitude	of	the	values	doesn’t	really	matter	–	just	order	of	preference.	

• If	you	want	to	import	a	non-standard	module,	make	sure	you	include	that	file	
with	your	submission.	Don’t	use	anyone	else’s	code	related	to	this	specific	
problem,	but	if	you	use	someone	else’s	implementation	of	a	well-known	
algorithm,	please	cite	your	source.	

• If	you	gain	inspiration	from	the	existing	literature	on	Connect	Four,	make	
sure	you	cite	it!	

	
	
	
3.	Optional	Bonus:	Connect	Four	Tournament	
(To	be	completed	as	a	team	only)	
	



You	are	invited	to	submit	an	agent	to	a	Connect	Four	tournament,	with	bonus	points	
as	the	prize!	In	the	above	assignments,	I	restricted	your	agent	in	several	ways.	Most	
notably,	I	limited	you	to	fixed-depth	search	at	depth	4.	For	the	tournament	you	will	
have	significantly	more	freedom.		
	
To	prepare	an	agent	for	the	competition,	fill	in	the	file	teamname_tournament.py.	
You	should	rename	it	with	your	actual	team	name!	That	file	contains	a	class	
called	C4TournamentAgent,	which	currently	only	has	a	constructor	and	one	
method.	The	method	getMove	returns	an	action	for	the	agent	to	perform	in	the	
game	(assume	that	the	current	state	of	the	game	is	the	one	returned	by	
self.__problem.getState().	The	details	are	up	to	you!	
	
The	rules	are:	

• Your	agent	must	be	single-threaded.	
• At	the	end	of	your	agent’s	getMove	method	self.__problem’s	state	must	

be	the	same	as	when	getMove	was	called.	
• To	qualify	for	the	tournament,	your	agent	must	defeat	an	agent	of	mine	that	

would	get	full	credit	in	Part	2	as	both	Player	1	and	Player	2.		
	
I	will	conduct	a	round-robin	tournament	amongst	the	qualifying	agents.	The	two	
agents	with	the	most	points	after	the	tournament	will	compete	in	a	showcase	match	
in	class.	The	runner-up	team	will	get	1	bonus	point.	The	developers	of	the	winning	
agent	will	get	2	bonus	points.	To	have	a	shot	at	the	gold,	be	creative	and	keep	
improving	your	agent!	
	
To	make	it	easier	for	you	to	test	your	agent	out	you	can	run	connectfour.py	in	
tournament	mode	with	the	-r	option.	That	causes	it	to	load	a	tournament	agent	and,	
when	it’s	time	for	a	player	to	move,	it	just	calls	getMove	rather	than	doing	its	own	
minimax	search.	To	get	you	started	with	a	first	opponent,	you	can	use	
c4benchmarkagent.pyc	in	this	mode	as	well.	To	see	if	your	agent	qualifies	for	the	
tournament,	submit	it	to	the	autograder!	
	
	 	



4.	Report	(20	pts)	
(To	be	completed	as	a	team	only)	
	
In	games.pdf	include	the	following:	
	
Tic-Tac-Toe	Analysis	(10	pts)	
	
Run	tictactoe.py	with	the	following	configurations:	

• -O -s minimax -p -o minimax -t 100 
o Alpha-beta	pruning	against	itself 

• -O -s minimax -p -e -o random -t 100 
o Alpha-beta	pruning	(searching	in	every	step)	against	random	play 

• -O -s expectimax -o minimax -t 100 
o Expectimax	against	minimax  

• -O -s expectimax -o random -t 100 
o Expectimax	against	random	play 

The	-O	option	makes	the	agent	play	O	instead	of	X,	-s	chooses	the	agent’s	strategy,	
-o	chooses	the	opponent’s	strategy,	and	-t	sets	the	number	of	games	to	play.	Make	
a	clear,	well-labeled	table	of	the	results.	Then,	referring	to	these	results,	answer	the	
following	email	from	a	fellow	student.	
	
To: you@acollege.edu 
From: astudent@acollege.edu 
Subject: Tic-tac-toe 
 
Hey again, 
Okay, so now I’m trying to make a tic-tac-toe program. I’ve been testing it out on my 4-
year-old niece, since tic-tac-toe is still fun for her. The weird thing is that expectimax is 
doing *better* against her than minimax! At least it’s winning a lot more against her. I 
thought minimax was supposed to give an optimal strategy?!?! Minimax can’t even beat 
expectimax when you make them play each other. I don’t get it. How can something 
that is not optimal do better than something that is optimal? What am I missing? 
-A 
	
A	little	while	later	you	get	another	email:	
	
To: you@acollege.edu 
From: astudent@acollege.edu 
Subject: Alpha-beta pruning?!? 
 
All right. Now things are getting weird. I got tired of waiting for minimax to compute the 
optimal strategy so I implemented alpha-beta pruning. I know some people make it 
search every time but that takes forever. To save time I just use alpha-beta search to 
pre-compute the strategy – that’s way faster. But now the agent doesn’t always do the 



right thing. Sometimes it could win the game, but makes a different move instead and 
ends up in a draw. I’ve even seen my niece win a couple times! Shouldn’t that be 
impossible?! I must have a bug, right? But I tested it really well and it was working fine 
before. I’m so confused. 
-A 
	
Answer	this	email	too.	You	should	confirm	the	student’s	experience	using	your	own	
agent	by	running	tictactoe.py	with	-O -s minimax -p -o random -t 100	
(that	is,	a	strategy	pre-computed	with	alpha-beta	search	against	random	play)	and	
then	refer	to	those	results	in	your	response.	You	might	also	want	to	consider	
illustrating	your	explanation	by	performing	alpha-beta	search	on	a	simple	game	tree	
and	considering	what	would	happen	if	that	strategy	were	employed	against	an	
opponent	who	plays	randomly.	
	
Connect	Four	Agent	Description/Analysis	(10	pts)	
	
Write	a	brief,	clear	description	of	your	Connect	Four	agent.	You	may	assume	that	
your	reader	is	familiar	with	minimax	search,	but	you	should	describe	anything	you	
did	beyond	the	“vanilla”	algorithm.	Ideally,	after	reading	your	description,	a	
classmate	should	be	able	to	re-implement	your	agent’s	algorithm	and	try	it	out	for	
themselves.	You	don’t	need	to	describe	every	algorithmic	step	(in	fact,	for	clarity	
and	brevity’s	sake,	you	really	shouldn’t),	but	it	should	be	clear	what	you	compute	
and	how	you	use	the	results.	
	
Also,	investigate	what	decisions	are	key	to	your	agent’s	success.	Consider	two	design	
decisions	in	your	heuristics	that	you	made	that	you	think	made	a	big	difference.	In	
the	files	c4comparisonagent1.py	and	c4comparisonagent2.py	create	agents	that	are	
just	like	the	one	in	c4agent.py	but	that	are	each	missing	a	key	element	or	idea	
(perhaps	an	aspect	of	the	evaluation	function	or	the	move	order).	Empirically	
measure	the	impact	of	these	design	decisions	by	comparing	these	agents	to	your	
final	agent.	This	is	sometimes	called	an	ablation	study	because	you	are	
metaphorically	removing	part	of	your	agent’s	“brain”	to	study	what	happens	in	its	
absence.	Pit	them	all	against	the	benchmark	agent	to	see	if	your	final	agent	wins	
more	consistently.	Make	sure	you	run	multiple	trials	(games)	to	be	sure	that	your	
results	are	not	just	luck	of	the	draw.	
	
Write	a	clear	description	of	the	comparison	agents	and	precisely	how	you	gathered	
your	results	(again,	ideally	your	description	should	be	clear	and	thorough	enough	to	
allow	a	classmate	to	recreate	your	experiment).	Present	the	results	and	clearly	state	
your	conclusions	about	the	significance	of	these	design	decisions.	


