
Optimization and Landscape Search

Jonathan Scott1 and Narges Norouzi2

1University of California, Santa Cruz
2University of California Santa Cruz & University of California, Berkeley

1 Optimization Problems

An optimization problem involves finding the “best” solution from all possible
solutions. We can classify an optimization problem as discrete or continuous.
An example of a discrete optimization includes graph search. An example of
continuous optimization includes finding the maximizing or minimizing value
of a continuous function. In this assignment, we explore local search (i.e. job
scheduling, traveling salesman), which implies we are searching for something.
In this search, the path is not as critical as the goal or solution. If the path is
also important, we refer to this as a systematic search (i.e. route finding, chess).

2 Local Search Algorithms

In many optimization problems, the path to the goal is irrelevant; the goal state
itself is the solution. Local search is widely used for problems with very large
search spaces, the solutions returned are good but usually not optimal or the
best. Local search algorithms keep a single “current” state or a small set of
states and iteratively try to improve on them. These usually make this class of
algorithms very memory efficient.

3 Algorithms

In this assignment, you have the option of exploring the Ackley, Rastrigin, or
Rosenbrock functions. They are all non-convex functions with a global minimum
used to test optimization algorithms. An example is given in the attached
Python notebook of how to plot the Ackley function, this can be adapted to the
other optimization problems.

Ackley function[2]:

f(x, y) := −20exp[−0.2
√

0.5(x2 + y2)]− exp[0.5(cos(2πx) + cos(2πy))] + e+20

It has a global optima of f(0,0) = 0

1

Rastrigin function[3]:

f(x) = An+

n∑
i=1

[
x2
i −A cos(2πxi)

]
where A = 10 and xi ∈ [−5.12, 5.12].

It has a global minimum at x = 0 where f(x) = 0.

Rosenbrock function[4]:

f(x, y) = (a− x)2 + b(y − x2)2

It has a global minimum at (x, y) = (a, a2), where f(x, y) = 0 and a = 1, b = 100.

Select a landscape and find solutions to these problems by implementing three
optimization algorithms: Stochastic Hill Climbing with Restarts (SHCR), Sim-
ulated Annealing (SA), and Local Beam Search (LBS).

4 Stochastic Hill Climbing with Restarts

Hill climbing treats our optimization surface as a landscape with peaks and
valleys. Hill climbing algorithms choose among available uphill moves according
to the steepness of these moves. Therefore one needs to define a function that
captures steepness, but since there are valleys and plateaus, our algorithm can
get stuck. Hence, we incorporate randomness and restarts to search different
paths in parallel. This encapsulates the idea of “if at first you don’t succeed,
try again.”. This is done until a goal is reached or the algorithm exhausted all
allowed number of restart attempts. This algorithm is asymptotically complete
with probability approaching 1, because it will eventually generate a goal state
as the initial state (with infinite number of restarts). Below is the pseudo-code
for the hill-climbing algorithm which can be restarted and run multiple times
until a goal is reached.

function Hill -Climbing (problem) returns a solution

inputs: a problem

static: Current , a node

Next , a node

Current ←− Make_Node(Initial State[problem])

for k −→ 0 to kmax do

Next ←− highest -valued successor of the Current

if Value[Next] < Value[Current] then return Current

Current ←− Next

end

2

5 Simulated Annealing

Simulated annealing is a probabilistic technique for approximating the global
optimum of a function. Simulated annealing escapes local minima by allowing
some “bad” moves and gradually decreasing their frequency. A typical annealing
scheduling is exponential, the temperature schedule or decay schedule should
be tuned to the problem. Below is the pseudo-code for the simulated annealing
algorithm[1, 5].

function Simulated_Annealing (problem) returns a solution

inputs: A problem

A schedule: a mapping from time to temperature

static: Current , a node

Next , a node

T: a temperature controlling the probability

of downward steps

decayRate: value in [0,1) used to decay the temperature

Current ←− Make_Node(Initial State[problem])

for k −→ 0 to kmax do

Next ←− randomly selected successor of Current

∆E ←− Value[Next] - Value[Current]

if ∆E> 0 then Current ←− Next

else Current ←− Next with probability e∆E/T

T ←− Update_Temperature(decayRate , T, ∆E)

end

6 Local Beam Search

Local beam search is a greedy technique that keeps track of k states rather than
just one. At each iteration successors of the k states are generated and the best
k nodes are selected until a goal is found.

References

[1] Todd W Neller. Teaching stochastic local search. In FLAIRS Conference,
pages 8–14, 2005.

[2] Wikipedia. Ackley function — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Ackley\%20function&

oldid=1069641594, 2022. [Online; accessed 23-November-2022].

[3] Wikipedia. Rastrigin function — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Rastrigin\

3

%20function&oldid=1069631188, 2022. [Online; accessed 23-November-
2022].

[4] Wikipedia. Rosenbrock function — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Rosenbrock\

%20function&oldid=1094200520, 2022. [Online; accessed 23-November-
2022].

[5] Wikipedia. Simulated annealing — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Simulated\

%20annealing&oldid=1115450447, 2022. [Online; accessed 29-November-
2022].

4

