
A 4-Module Sequence for Applied Deep Learning

Narges Norouzi

University of California Santa Cruz & University of California, Berkeley

1 Outline

The 4-module assignment sequence is designed for an introductory undergrad-
uate deep learning course. Modules are designed to give students hands-on
experience with deep learning frameworks and concepts through working with
datasets of varying types. The coverage for modules includes:

• Module 1) introduction to linear regression analysis by working on Face-
book Metrics Dataset [2] for modeling total user interactions. Students
have also been introduced to non-linear datasets and how kernel methods
and weight regularization can be used for non-linear modeling patterns.

• Module 2) through working on the Fashion-MNIST dataset [6], students
will 1) understand how to pre-process image data and conduct dimen-
sionality reduction, 2) implement logistic regression from scratch, and 3)
implement a neural network and observe the capacity of neural networks
to learn a non-linearly separable decision boundary.

• Module 3) focuses on designing convolutional neural networks and train-
ing them on CIFAR-10 dataset [4]. The modules also introduce transfer
learning.

• Module 4) students will work on training recurrent neural networks on
the Reuters newswire classification dataset [3] and will analyze their ob-
servations.

This 4-module assignment sequence is easily adoptable by instructors and is
implemented in a modular structure. The target audience of these modules is
undergraduate students taking artificial intelligence or machine learning courses
that cover topics such as 1) linear regression, 2) logistic regression, 3) neural net-
works, 4) convolutional neural networks, and 5) recurrent neural networks. The
prerequisites for the course include programming, data structures, algorithms,
and probability courses.

This document provides a summary of the required background knowledge
for each module as well as a high-level outline of the 4-module sequence.

1



2 Module 1: Linear Regression

In this module, students will train a linear regression model to predict total
interactions on the Facebook Metrics dataset [2]. Students will also learn how
to fit a non-linear polynomial model using the linear regression framework and
use weight regularization to control the polynomial degree of the model.

2.1 Question 1: Linear regression from scratch

In this question, students implement linear regression algorithm from scratch in
Python. Linear regression aims to map feature vectors to a continuous value in
the range [−∞,+∞] by linearly combining the feature values.

Data is represented as a dataframe or a feature matrix. Let our feature
matrix be X whose dimensions are n×m, θ be a weight matrix of dimensions
m × 1, the bias vector b a column vector of dimension m × 1. Using these we
can predict Ŷ by the following relationship:

Ŷ = Xθ + b

2.1.1 Data: Facebook posts metrics

The dataset in this assignment contains features describing posts from a cos-
metic brand’s Facebook page. The authors use the following features:

• Category,

• Page total likes: Number of people who have liked the company’s page),

• Type: Type of content (Link, Photo, Status, Video),

• Post month: Month the post was published (January, February, March,
. . . , December),

• Post hour: Hour the post was published (0, 1, 2, 3, 4, . . . , 23) ,

• Post weekday: Weekday the post was published (Sunday, Monday, . . . ,
Saturday) ,

• Paid: If the company paid to Facebook for advertising (yes, no)

These features are used to model any of the following: ’Lifetime Post Total
Reach’, ’Lifetime Post Total Impressions’, ’Lifetime Engaged Users’, ’Lifetime
Post Consumers’, ’Lifetime Post Consumption’, ’Lifetime Post Impressions by
people who have liked your Page’, ’Lifetime Post reach by people who like your
Page’, ’Lifetime People who have liked your Page and engaged with your post’,
’comment’, ’like’, ’share’, ’Total Interactions’.

In this assignment, we will focus on ’Total Interactions’. Our feature space
will include: Category, Page total likes, Post month, Post hour, Post weekday,
and Paid.

2



2.1.2 Training and testing the linear regression model

Students will implement Mean Squared Error (MSE) and gradient descent al-
gorithm. Suppose our dataset consists of n records, each with d features:

X =


x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xn,1 xn,2 · · · xn,d


One way to include a bias is to augment X with a column of ones:

X =


1 x1,1 x1,2 · · · x1,d

1 x2,1 x2,2 · · · x2,d

...
...

...
. . .

...
1 xn,1 xn,2 · · · xn,d


We also have n labels corresponding to the correct classification of each of

the above records, y = [y1, y2, · · · , yn]T , i.e.:

y =


y1
y2
...
yn


Through optimization, we will find the optimal parameter values θ = [θ0, θ1, · · · , θd]T

of the linear regression model, where θ0 is the bias weight. To simplify our no-
tation, let

ŷ = Xθ =


X1,0θ0 +X1,1θ1 + · · ·+X1,dθd
X2,0θ0 +X2,1θ1 + · · ·+X2,dθd

...
Xn,0θ0 +Xn,1θ1 + · · ·+Xn,dθd

 =


ŷ1
ŷ2
...
ŷn


We seek θ such that the MSE is minimized (the 1/2 factor makes the deriva-

tion easier). Let the MSE be a function of θ, J(θ):

J(θ) =
1

2n

n∑
i=1

(ŷi − yi)
2

Since the above is a convex function, it has a unique minimum value. Taking
the derivative with respect to θi, we get:

∂

∂θj
J(θ) =

1

2n

n∑
i=1

∂

∂θj
(ŷi − yi)

2

=
1

n

n∑
i=1

(ŷi − yi)
∂

∂θj
(ŷi)

3



Recall the chain rule from calculus, and that each ŷi is a function of the θi,
so the above becomes:

∂

∂θj
J(θ) =

1

n

n∑
i=1

(ŷi − yi)xi,j

Students will:

1. Get training and testing set by calling train test split()

2. Define a weight (θ) vector

3. Implement Gradient Descent using the information above

4. Record the Sum Squared Error for training and test data

5. Return the weight matrix, train errors and test errors

6. Plot the training and test errors and comment on the plot.

2.2 Question 2: Fitting non-linear data

Data may not follow a linear relationship from the independent variable X to
the dependent variable y. Fitting a linear model to this would be inaccurate
and yield a high loss.

If we want to model an order d polynomial relationship between X and y
we can augment our initial linear model where instead of having:

yi = θ0 + θ1xi

We have:

yi = θ0 + θ1xi + θ2x
2
i + · · ·+ θdx

d
i

We can use the same linear regression algorithm we if we first augment X
and add extra columns (or dimensions).

X =


x1 x2

1 · · · xd
1

x2 x2
2 · · · xd

2
...

...
. . .

...
xn x2

n · · · xd
n


Then our new higher order ŷ is computed same as before.

ŷ = Xθ =


1 x1 x2

1 · · · xd
1

1 x2 x2
2 · · · xd

2
...

...
...

. . .
...

1 xn x2
n · · · xd

n



θ0
θ1
...
θd

 =


θ0 + θ1x1 + θ2x

2
1 + · · ·+ θdx

d
1

θ0 + θ1x2 + θ2x
2
2 + · · ·+ θdx

d
2

...
θ0 + θ1xn + θ2x

2
n + · · ·+ θdx

d
n

 =


ŷ1
ŷ2
...
ŷn


4



2.2.1 Weight regularization

When we try to fit a d-order polynomial to our data, we could end up overfitting.
This happens when you try to fit a higher dimensional curve than what the
distribution of our data actually exhibits. We can mitigate this by choosing
an order d that matches your data closely, but often times this is not directly
apparent in noisy data. Another method to avoid overfitting is regularizing,
where you modify your loss to keep weights small which flattens our polynomial.
This helps us avoid learning polynomials that are too complex for our data.

To add regularization we modify the original loss function J to include reg-
ularizing term and a new hyperparameter that we tune λ. This controls the
amount of regularizing we impose on the weights. We use the loss computed
from the validation set to tweak this parameter.

J(θ) =
1

2n

n∑
i=1

(h(i) − y(i))2 + λ

d∑
j=1

θ2j

Our gradient computation also changes:

∂

∂θj
J(θ) =

1

n

n∑
i=1

(h(i) − y(i))xi,j + 2λθj

We apply this gradient the same way as before in our gradient descent algo-
rithm:

θj = θj − α
∂

∂θj
J(θ)

3 Module 2: Logistic Regression and Neural Net-
work

In this module, students will use the Fashion-MNIST dataset [6], which is a
cool little dataset with gray scale 28 × 28 images of articles of clothing. Using
this dataset, students will observe linearly separable and non-linearly separable
datasets and will train logistic regression and neural network for each type of
decision boundary.

3.1 Question 1: Data pre-processing

The images in the dataset are valued from [0, 255]. This is the normal range for
images and we need to normalize the data.

In order to normalize the data to [0, 1], we use the equation:

xnorm =
x− xmin

xmax − xmin

We can assume that xmin = 0 and xmax = 255, this is a safe assumption
since we are working with image data. This means that for image data, if we
want to normalize to [0, 1] the equation simplifies to:

5



imgnorm =
img

255
Students will then need to reshape every single image in the dataset as a

vector of length 28 × 28 = 784. The data is then transformed into a 2D data
using PCA algorithm.

3.2 Question 2: Linearly-separable data

Some of the data is easily to separate with a line, this concept is called linear
separability. Students will plot samples from Ankle Boot and Trouser class.
and will observe that it’s easy to distinguish between a shoe and pants with a
linearly-separable decision boundary.

3.3 Question 3: Non-linearly separable data

Students will then plot the Pullover and Coat classes which are basically mixed
together. We can’t easily draw a line between them.

3.4 Question 4: Logistic regression

Recall that each image is 28×28×1 matrix which we flatten to a 784-dimensional
row vector. Image i looks like:

xi =
[
x1 x2 · · · x784

]
The dataset X is then the collection of all these n images.

X =


x1,1 x1,2 · · · x1,784

x2,1 x2,2 · · · x2,784

...
...

. . .
...

xn,1 xn,2 · · · xn,784


Logistic regression uses a bias term, we can easily incorporate this by adding a
column of ones at the beginning.

X =


1 x1,1 x1,2 · · · x1,784

1 x2,1 x2,2 · · · x2,784

...
...

...
. . .

...
1 xn,1 xn,2 · · · xn,784


For each image we have a corresponding label yi. This is the class “Coat” and
“Pullover”. Each of which is mapped to a unique number.

Y =


y1
y2
...
yn


6



We will try to find the optimal parameter values θ = [θ0, θ1, · · · , θ784]T of our
logistic regression model, where θ0 is the bias weight. To simplify our notation,
let

Z = Xθ =


1 x1,1 x1,2 · · · x1,784

1 x2,1 x2,2 · · · x2,784

...
...

. . .
...

1 xn,1 xn,2 · · · xn,784




θ0
θ1
...

θ784



=


θ0 + x1,1θ1 + · · ·+ x1,784θ748
θ0 + x2,1θ1 + · · ·+ x2,784θ784

...
θ0 +Xn,1θ1 + · · ·+ xn,784θ784

 =


z1
z2
...
zn


Since each zi is in the range (−∞,∞) and our labels are [0, 1] we pass zi

into the sigmoid function.

σ(zi) =
1

1 + e−zi
= hi

Now we can make predictions using hi by simply rounding it to 0 or 1.

predi = round(hi)

In order to train our logistic regression model we need to find the parameter
vector θ that minimizes our cost function J , we will be Binary Cross Entropy
(BCE).

J = − 1

n

n∑
i=1

[yi log(hi) + (1− yi) log(1− hi)]

Where yi is your true label and hi = σ(zi).
In order to know whether we want to increment or decrement our weights

to minimize the loss, we calculate its partial derivative with respect to weights,
we call this the gradient, the matrix form of the gradient is:

∇J =
1

n
XT (H − Y )

with X =


1 x1,1 x1,2 · · · x1,784

1 x2,1 x2,2 · · · x2,784

...
...

...
. . .

...
1 xn,1 xn,2 · · · xn,784

, Y =


y1
y2
...
yn

, and H =


h1

h2

...
hn


We then use this gradient in an iterative algorithm called gradient descent

where every iteration we change the weights like so:

θ(t+1) = θ(t) − α∇J

Where t is the iteration number, α is your learning rate, θ(t) is your current
weight column vector, and θ(t+1) is your updated weight column vector.

7



3.5 Question 5: Neural network

Since Pullovers vs. Coats demonstrate a non-linear decision boundary, a logistic
regression cannot accurately classify between the two classes. Instead, in this
question, students will build a neural network with Keras.

4 Module 3: Convolutional Neural Network

In this module, students will build a classifier model that is able to distinguish
between 10 different classes of images - airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks in CIFAR-10 [4].

4.1 Question 1: Convolutional neural network baseline

Students will follow these steps to build a baseline CNN model:

1. Explore the data

2. Build a small Convolutional Neural Network to solve the classification
problem

3. Evaluate training and validation accuracy

4.2 Question 2: Transfer learning

There is a huge shortcut possible in training neural networks for recognition
tasks, called transfer learning. The idea is to start with a fully-trained im-
age recognition neural network, off-the-shelf with trained weights. We can re-
purpose the trained network for a particular recognition task, making use of
the days of training that were needed to find those weights. What learned by
the neural network in its early layers are useful features in recognizing various
features in images. Keras even has pre-trained models built in for this purpose.

Some Keras Pretrained Models include: Xception, VGG16, VGG19, ResNet,
ResNetV2, ResNeXt, InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2,
DenseNet, and NASNet.

Usually one uses the layers of the pre-trained model up to some point, and
then creates some fully-connected layers to learn the desired recognition task.
The earlier layers are “frozen”, and only the later layers need to be trained. In
this module, VGG16 [5] is used, which was trained to recognize 1000 objects in
ImageNet [1].

5 Module 4: Recurrent Neural Network

In this module, students will train a Recurrent Neural Network (RNN) for a
Natural Language Processing (NLP) task.

8



5.1 Question 1: Recurrent neural network for topic clas-
sification

In this question, Reuters newswire [3] is used for a news topic classification task.
The dataset includes text paired with 46 topics as labels. Students will create
a model using an RNN layer (Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU), unidirectional or bidirectional) to achieve at least 60%
validation accuracy in 10 epochs or less.

5.2 Question 2: Comparison between deep recurrent struc-
tures

Using the topic classification task in question 1, students are asked to answer
the following questions:

1. What are the major differences between LSTM or GRU, unidirectional or
bidirectional?

2. What are the major advantages of each?

3. What are the major disadvantages of each?

5.3 Acknowledgement

I would like to thank all my Teaching Assistants who contributed to the concep-
tion and implementation of the 4-module sequence. I would also like to thank
my students that provided feedback over the years to improve the quality of
these assignments.

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[2] Kaggle. Facebook Metrics. https://www.kaggle.com/datasets/

masoodanzar/facebook-metrics, 2020. [Online; accessed 27-November-
2022].

[3] Keras. Reuters Newswire Sataset. https://keras.io/api/datasets/

reuters/. [Online; accessed 27-November-2022].

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

9



[6] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

10


