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1 Maximum likelihood estimators

A maximum likelihood estimate for some hidden parameter λ (or parameters,
plural) of some probability distribution is a number λ̂ computed from an
i.i.d. sample X1, ..., Xn from the given distribution that maximizes something
called the “likelihood function”. Suppose that the distribution in question is
governed by a pdf f(x; λ1, ..., λk), where the λi’s are all hidden parameters.
The likelihood function associated to the sample is just

L(X1, ..., Xn) =

n
∏

i=1

f(Xi; λ1, ..., λk).

For example, if the distribution is N(µ, σ2), then

L(X1, ..., Xn; µ̂, σ̂2) =
1

(2π)n/2σ̂n
exp

(

−
1

2σ̂2

(

(X1 − µ̂)2 + · · ·+ (Xn − µ̂)2
)

)

.

(1)
Note that I am using µ̂ and σ̂2 to indicate that these are variable (and also
to set up the language of estimators).

Why should one expect a maximum likelihood esimate for some parameter
to be a “good estimate”? Well, what the likelihood function is measuring
is how likely (X1, ..., Xn) is to have come from the distribution assuming
particular values for the hidden parameters; the more likely this is, the closer
one would think that those particular choices for hidden parameters are to
the true values. Let’s see two examples:
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Example 1. Suppose that X1, ..., Xn are generated from a normal distribu-
tion having hidden mean µ and variance σ2. Compute a MLE for µ from the
sample.

Solution. As we said above, the likelihood function in this case is given by
(1). It is obvious that to maximize L as a function of µ̂ and σ̂2 we must
minimize

n
∑

i=1

(Xi − µ̂)2

as a function of µ̂. Upon taking a derivative with respect to µ̂ and setting it
to 0, we find that

µ̂ =
X1 + · · · + Xn

n
= X,

the sample mean. So, the sample mean is the MLE for µ in this case.

Example 2. Now we give an example where calculus does not so easily
apply: Suppose that X1, ..., Xn are random samples from a distribution that
is uniform on [0, N ], where N is now the hidden parameter. We wish to
produce a maximum likelihood estimate for N . In this case, the likelihood
function is

L(X1, ..., Xn; N̂) =

{

0, if any Xi outside [0, N̂ ];

(1/N̂)n, if all Xi ∈ [0, N̂ ].

Clearly, to maximize L, given X1, ..., Xn, we should choose N̂ to be max(X1, ..., Xn);
and note that we got this MLE without using calculus.

Now it turns out that max(X1, ..., Xn) is actually a biased estimator for
N ; and so, maximum likelihood estimates need not be unbiased. Let us see
that this is so: We must compute the expected value for N̂ , and for this we
will need its pdf. Naturally, we start by finding the cdf for N̂ . We have that

P(N̂ ≤ x) = P(X1 ≤ x, X2 ≤ x, ..., Xn ≤ x)

= P(X1 ≤ x) · · ·P(Xn ≤ x)

= P(X1 ≤ x)n

= (x/N)n.

Taking a derivative, then, we find that if f(x) is the pdf for N̂ , then

f(x) =

{

0, if x < 0 or x > N ;
n(x/N)n−1, if x ∈ [0, N ].
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So,

E(N̂) =

∫ N

0

nxn/Nn−1dx = nN/(n + 1),

which is not equal to N , meaning that N̂ is a biased estimator for N .

2 Least squares

Suppose that you are presented with a sequence of data points (X1, Y1), ...,
(Xn, Yn), and you are asked to find the “best fit” line passing through those
points. Well, of course, in order to answer this you need to know precisely
how to tell whether one line is “fitter” than another. A common measure of
fitness is the square-error, given as following: Suppose y = λ1x + λ2 is your
candidate line. Then, the error associated with this line is

E :=
n
∑

i=1

(Yi − λ1Xi − λ2)
2.

In other words, it is the sum of the square distance between the y-value at
the data points X = X1, X2, ..., Xn and the y-value for the line at those data
points.

Why use the sum of square errors? Well, first of all, the fact that we
compute squares means that all the terms in the sum are non-negative and
error at a given point X = Xi is the same if the point (Xi, Yi) is t units
above the line y = λ1x + λ2 as it is if it is t units below the line. Secondly,
squaring is a “smooth operation”; and so, we can easily compute derivatives
of E – in other words, using sum of square errors allows us to use calculus.
And finally, at the end of this note we will relate the sum of square error to
MLE’s.

Minimizing E over all choices for (λ1, λ2) results in what is called the
“least squares approximation”. Let us see how to compute it: Well, basically
we take a partial of E with respect to λ1 and λ2 and then set those equal to
0; so, we have the equations

0 =
∂E

∂λ1

=
n
∑

i=1

2(Yi − λ1Xi − λ2)(−Xi)

0 =
∂E

∂λ2

=

n
∑

i=1

2(Yi − λ1Xi − λ2)(−1).
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Upon rearranging these equations, collecting coefficients of λ1 and λ2, we
find they are equivalent to:

λ1

(

n
∑

i=1

X2

i

)

+ λ2

(

n
∑

i=1

Xi

)

=

n
∑

i=1

XiYi

λ1

(

n
∑

i=1

Xi

)

+ λ2 · n =

n
∑

i=1

Yi.

Now suppose that instead of y = λ1x + λ2 we have a sequence of dif-
ferentiable functions f1(x), ..., fk(x) and that we seek paramters λ1, ..., λk so
that

y = λ1f1(x) + · · ·+ λkfk(x)

is a best-fit curve to a set of data points (X1, Y1), ..., (Xk, Yk). Then, it turns
out that the above “least squares” approach will also work for this problem.

3 MLE’s again, and least squares

In this section we consider a different sort of problem related to “best fit
lines”. Suppose that we know a priori that the data points (Xi, Yi) fit a
straight line, except that there is a little error involved. That is to say,
suppose that X1, ..., Xn are fixed and that we think of Y1, ..., Yn as being
random variables satisfying

Yi = λ1Xi + λ2 + εi, where εi ∼ N(0, σ2),

where all the εi’s are assumed to be independent.
This sort of situation is quite common in the sciences, particularly physics:

Imagine that the position of a particle as a function of time satisfies P =
λ1T + λ2; however, in tracking the particle, there is some uncertainty as to
its exact position, and this uncertainty is roughly normal with mean 0 and
variance σ2. Then, if we let P ′ be the observed position of the particle, we
have that P ′ = λ1T + λ2 + ε, where ε ∼ N(0, σ2).

Now we find a MLE estimate for λ1, λ2. Our likelihood function is given
by (we assume X1, ..., Xn are fixed)

L(Y1, ..., Yn; λ1, λ2, σ
2) =

1

(2π)n/2σn
exp

(

−1

2σ2

(

n
∑

i=1

(Yi − λ1Xi − λ2)
2

))

.
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Clearly, for any fixed σ > 0, maximizing L is equivalent to minimizing

E :=
n
∑

i=1

(Yi − λ1Xi − λ2)
2.

So we see that the least squares estimate we saw before is really equivalent
to producing a maximum likelihood estimate for λ1 and λ2 for variables X
and Y that are linearly related up to some Gaussian noise N(0, σ2). The
significance of this is that it makes the least-squares method of linear curve
fitting a little more natural – it’s not as artificial as it might have seemed
at first: What made it seem artificial, at first, was the fact that there are
many, many different error functions that we could have written down that
measure how well the line y = λ1x + λ2 fits the given data. And what we
have shown is that the “sum of square errors” error function happens to have
a privileged position among them.
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