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On Integral Probability Metricsg-Divergences and
Binary Classification

Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Grett@ernhard Scholkopf and Gert R. G. Lanckriet

Abstract—q¢-divergences are a widely studied class of distance

measures between probabilities. In this paper, a differentlass of
distance measures on probabilities, called the integral mbability
metrics (IPMs) is considered. IPMs, for example, the Wassetein

I. INTRODUCTION

HE notion of distance between probability measures
[1] has found many applications in probability theory,

distance and Dudley metric have, thus far, only been used in mathematical statistics and information theory. Popugalia

a limited setting, as theoretical tools in mass transportdaon
problems, in metrizing the weak topology (on the set of all
Borel probability measures defined on a metric space), etcand
their practical applicability have not been well investigaed. In
this paper, novel properties of IPMs are presented by expldng
their relation to ¢-divergences and binary classification, which
we believe would make IPMs as widely and practically applicble
as ¢-divergences.

Firstly, to understand the relation between IPMs and ¢-
divergences, the necessary and sufficient conditions undarhich
these classes intersect are derived, using which the totahniation
distance is shown to be the only non-trivial -divergence that
is also an IPM. This shows that IPMs are essentially differen
from ¢-divergences. Secondly, since the empirical estimation o
¢-divergences, especially the KL-divergence is well-stued, the
empirical estimation of IPMs from finite i.i.d. samples is then
considered and their consistency and convergence rates aama-
lyzed. The empirical estimators of the Wasserstein distarecand
Dudley metric are shown to bestrongly consistent. Thirdly, similar
to the relation between ¢-divergences and binary classification,
IPMs are related to binary classification by showing that IPMs
between the class-conditional distributions are the negate of
the optimal risk associated with a binary classifier. In particular,
the Wasserstein distance is shown to be related to the Lipsith
classifier, the Dudley metric to the bounded Lipschitz clasfer
and the maximum mean discrepancy (also an IPM) to the Parzen
window classifier.

Index Terms—Integral probability metrics, ¢-divergences,
Wasserstein distance, Dudley metric, Maximum mean discrep
ancy, Reproducing kernel Hilbert space, Rademacher averag
Lipschitz classifier, nearest neighbor classifier, Parzen iwdow
classifier, support vector machine.
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cations include homogeneity tests (the two-sample proplem
independence tests, goodness-of-fit tests, establiskeintyat
limit theorems, density estimation, signal detection, noied
and source coding, etc. One of the widely studied and well
understood families of distances/divergences betweehapro
bility measures is thé\li-Silvey distancg?], also called the
Csisar's ¢-divergencd3], which is defined as
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fwhere (M, A) is a measurable space and: [0,00) —

(—o0,00] is a convex functiofl. Let &7 be the set of all
probability measures defined did. Some of the well-known
distance/divergence measures hare obtained by appropri-
ately choosingp: Kullback-Liebler (KL) divergenced(t) =
tlogt), Hellinger distanced(t) = (v/t — 1)2), total variation
distance ¢(t) = |t — 1|), x?-divergence ¢(¢t) = (¢t — 1)?),
etc. See [4] and references therein for some of the statistic
and information theoretic applications wheralivergences are
used.

On the other hand, another popular family (particularly
in probability theory and mathematical statistics) of alste
measures or? is theintegral probability metric(IPM) [5]

defined as
dP — d

77 (P, Q) = sup
feT
whereJ is a class of real-valued bounded measurable func-
tions on M. This definition of IPMs is motivated from the
notion of weak convergencef probability measures on metric
spaces [6, Section 9.3, Lemma 9.3.2]. In probability theory
IPMs appear in the context of proving central limit theorems
using Stein’s method [7], [8]. These are also the fundantenta
guantities that appear in empirical process theory [9], @he
Q is replaced by thempirical distributionof P.

Some popular distance measures in probability theory and
statistics can be obtained by appropriately choosingup-
pose(M, p) is a metric space, wherté is the Borelo-algebra
induced by the metric topology an#” is the set of all Borel
probability measures o. Choosing = {f : ||f|lsr < 1}
in @ yields theDudley metric[10, Chapter 19, Definition

; )

1Usually, the conditionp(1) = 0 is used in the definition of-divergence.
Here, we do not enforce this condition.
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2.2], which metrizes theveak topologyon & when M is contributions in this paper are three-fold and explained in
separable [6, Theorem 11.3.3]. Therefore, the Dudley metdetail below.
is very useful in the context of proving the convergence of

probability measures with respect to the weak t0p0|ogyEHe(5Iivergences are widely studied (see [4], [16] and reference

HflLBL . .H_fHOO Az £ ]loe := Sup{lf(x” S rf ]éf} therein), in this work, we first investigate the relationvae¢n
and ||| T sup{|f(z) - f(y)_|/p(:v,y) Pro7 oyl 1§ IPMs and¢-divergences, the motivation being that if some of
wherel|f, is called the Lipschitz semi-norm of a real-value(ﬁlhe IPMs can be realized @sdivergences, then the properties

function f on M. ChoosingF = {f : | fllr < 1} yields L . .
the Kantorovich metric The famous Kantorovich-RubinsteinOf 4 Q|vergences will carry over to thosg IPMs also. To this
end, in Sectiori ]I, we first show thats is closely related

theorem [6, Theorem 11.8.2] shows that whiénis separable, to the variational form ofD, [24]-[26] and is ‘“trivially”

the Kantorovich metric is the dual representation of the so , e
called Wasserstein distanogefined as a ¢-divergence if ¥ is chosen to be the set of all real

valued measurable functions aW (see Theorenmh]l). Next,
Wi(P,Q) := inf /p(x’y) du(z,y), (3) Wwe _ggneralize _this result by determining the necessary and
HEL(P,Q) sufficient conditions onF and ¢ for which v5(P,Q) =
D4(P,Q), VP,Q € ¥y C &, where P, is some subset of
&. This leads to our first contribution in this paper, answgrin

marginalsP and Q. Due to this duality, in this paper, Wethe guestion, “Given a set of distance/divergence measures

refer to the Kantorovich metric as the Wasserstein distan{:%? ; rf.} (indexed byd) aqd{D ¢ : ¢} (indexed by@ defined
and denote it asV’ when M is separable. The Wasserstei?" 2, is there a set of distance measures that is common to

distance has found applications in information theory [11?0th these families?” We show that the clas¢es : 7} and

mathematical statistics [12], [13inass transportation prob- thD ¢t :tgl} v(grgsr)ingiesgﬁsswﬁ; r;n;[r?rflfgns-zglvlvas”){h(;rglilha;se
lems[14] and is also called as thearth mover’s distancen €to e

engineering applications (see [15] and references théoeia classes are essentially different and therefore the ptiepaf

list of engineering applications where the Wassersteitade ¢-divergences will not carry over to IPMs.

is used). We refer the interested reader to [16, Chapterr5] fo 2) Estimation of IPMs:Though IPMs like the Wasserstein
the generalizations of;. s is the total variation metric distance and Dudley metric are far-reaching as theoretical
whenJF = {f : ||fllo < 1} while it is the Kolmogorov tools, they have a definite drawback: explicit calculati®ulif-
distancewhen ¥ = {I_.4 : t € R?}. Note that the ficult for most concrete examples. The same issue also arises
classical central limit theorem and the Berry-Esséenrirao with MMD and ¢-divergences where the exact computation is
in R? use the Kolmogorov distance. The Kolmogorov distangeot straightforward for certain distributions. Therefogéven

also appears in hypothesis testing as the Kolmogorov-8wirrtwo probability measure® andQ, one approach to compute
statistic [10]. Recently, [17], [18] considerel to be a unit the distance (say the Wasserstein distance) between them is
ball in a reproducing kernel Hilbert space (RKHS) [19], [20]to estimate it based on finite samples drawn i.i.d. fiBrand
i.e.,F={f:|fllsc <1} and obtained &ilbertian metricon Q and hope that the estimate converges to the true distance
&, called themaximum mean discrepan¢yIMD). Here, { betweenP and Q given a large number of samples. This
represents an RKHS with as its reproducing kernel (r.l@). situation also arises in statistical inference applicatiovhere
MMD is used in statistical applications like homogeneit® and Q are known only through finite samples drawn i.i.d.
testing [17], independence testing [21], testing for ctodal from them and one would like to estimate the distance between
independence [22], etc. P andQ.

Some of the previously mentioned IPMs, e.g., the Kan- The empirical estimation of-divergences, especially the
torovich distance and Dudley metric are mainly studied andl_-divergence is a well-studied problem (see [27], [28] and
used as tools of theoretical interest in probability theoryeferences therein). Wangt al. [27] used a data-dependent
However, their practical applicability is not well studiefls space partitioning scheme and showed that the non-paiametr
mentioned before, the Dudley metric is proposed and usestimator of KL-divergence istrongly consistentHowever,
only in the context of metrizing the weak topology o# the rate of convergence of this estimator can be arbitrarily
[6, Chapter 11]. On the other hand, the Kantorovich distanskbw depending on the distributions. On the other hand,
is more popular and well-studied in its primal form in (3py exploiting the variational representation ¢fdivergences,
as the Wasserstein distance than as an IPM [14], [23]. In tiNgjuyenet al. [28] provide an estimate of a “lower bound” of
work, we present novel properties of IPMs (that have not be#ite KL-divergence by solving a convex program. Therefore,
explored before) by studying their relation #divergences as our second contribution, in Sectibnl lll, we consider the
and binary classification. We believe the results presentedn-parametric estimation of some IPMs, in particular the
would provide a better understanding of IPMs and make thewasserstein distance, Dudley metric and MMD based on
as widely and practically applicable asdivergences. Our finite samples drawn i.i.d. fron® and Q. The estimates

of the Wasserstein distance and Dudley metric are obtained
keir/?elfuc)?Cttir?g ibert :psggeﬂ? ifR’ar(lz’%)myH ifkt(rféy?olilzvﬁnrsp;]oc?lg'(:i(?)g by solving linear programs while an estimator of MMD is
Yy M, k(,y) € Fand(i) Yy € M, ¥ f € H, (f,k(y) = fly). Ccomputed in closed form (see SectionIll-A). In SecfionBlI-
F is called a reproducing kernel Hilbert space. we then show that these estimators are strongly consigteint a

1) IPMs and ¢-divergences: Since the properties of-

whereP,Q € 2, := {P: [p(z,y)dP(z) < oo, Vy € M}
and L(P,Q) is the set of all measures o x M with



also provide their rates of convergence. We use tools frgmoperties of IPMs that have not been explored before and

concentration inequalities and empirical process the®fyd help to understand them from a more practical perspective,

establish these results on consistency and rate of comeggewhich opens up many opportunities for applications. For

In SectionIII-G, we describe simulation results that demomronvenience, in the following, we introduce some notatfat t

strate the practical viability of these estimators. Sitmetbtal we use throughout the paper. Supplementary results used in

variation distance is also an IPM, in SectlonTlI-D, we dissu proofs are collected in the Appendix.

its empirical estimation and show that the empirical estima

is not strongly consistent. Because of the latter, we pmvig\ Notation

lower bounds for the total variation distance in terms of the’

Wasserstein distance, Dudley metric and MMD, which can beFor a measurable functioff and a signed measur@,

consistently estimated. These bounds also translate a loRf := [ fdP denotes the expectation g¢f underP. [A]

bounds on the KL-divergence through Pinsker’s inequalifﬁpl’esents the indicator function for sdt Given an i.i.d.

[29]. sampleXy,..., X, drawn fromP, P, := %2?215& rep-
Our study shows that estimating IPMs (especially tH&sents the empirical distribution, whebe represents the

Wasserstein distance, Dudley metric and MMD) is mucRirac measure at. We uselP, f to represent the empir-

simpler than estimating-divergences, and that the estimaical expectation > " | f(X;). We define Ligh,p) :=

tors are strongly consistent while exhibiting good rates dff : M — R|[|fll. < oo} and BL(M,p) = {f :

convergence. In addition, it has to be noted that IPMs aldd — R|[[[flle < oc}. We also defineW (P,Q) :=

consider the properties of the underlying spade (metric 77w (P, Q), B(P,Q) = v7,(P,Q), %(P,Q) = 75, (P,Q)

property determined by in the case of Wasserstein andnd 7V (P,Q) := v, (P,Q), whereFy = {f : [|f|r <

Dudley metrics; similarity property determined by the talrn 1}, s == {f : [ fllr < 1}, Fx == {f : [|f]lsc < 1} and

k [30] in the case of MMD) while computing the distance?rv = {f : |l < 1}.

betweenP andQ, which is not the case with-divergences.

This property is useful whel® andQ have disjoint suppoﬁ. [I. IPMS AND ¢-DIVERGENCES

With these advantages, we believe that IPMs can find many,

applications in information theory, image processing, nize In t|h|s sectl?r:l,:vae cons(;c_zle{mg + I} an?};D_(ﬁa d)}’dwglc;
learning and other areas. are classes o s angdivergences onZ? indexed by

and ¢, respectively. We derive conditions ¢h and ¢ such

3) IPMs and Binary ClassificationFinally, as our third that VP, Q € &£y C £, v5(P,Q) = D4(P,Q) for some
contribution, we show how IPMs naturally appear in binarghosen%?,. This would show whether the class of IPMs and
classification. Many previous works [4], [25], [31], [32]ated the class ofp-divergences are the same or not and under what
¢-divergences (betweei? and Q) to binary classification conditions.
(whereP andQ are the class conditional distributions) as the Consider the variational form ab, [24], [26], [28] given
negative of the optimal risk associated with a loss functidsy
(see [33, Section 1.3] for a detailed list of references). In
Section 1V, we present a series of results that relate IPMs to D, (P,Q) = sup {/ fdP— / &*(f) d@}

M M

binary classification. First, in Section TWA, we provideesult f:M—R
(similar to that forg-divergences), which showsgs (P, Q) as = fj}lpR(Pf - Q8" (1)), 4)

the negative of the optimal risk associated with a binarggita
fier that separates the class conditional distributi®nandQ, whereg*(t) = sup{tu—¢(u) : u € R} is theconvex conjugate
wherein the classification rule is restrictedfoTherefore, the of ¢. SupposeJ is such thatf € F = —f € F. Then,

Dudley metric, Wasserstein distance, total variationadise

and MMD can be understood as the negative of the optimal 15 (P, Q) = S,ugmf -Qfl= Sug(Pf -Qn. G

risk associated with a classifier wherein the classificatide re Ie

is restricted to{f : ||fllzr < 1}, {f : |fllr < 1}, Recently, Reid and Williamson [33, Section 8.2] considered
{f : IIflle < 1} and {f : ||fllac < 1} respectively. the generalization oD, by modifying its variational form as
Next, in Sectiong IV-B an@ TV-C, we present a second result .

that relates the empirical estimators studied in Sedigoll Do.s (P, Q) = igg(Pf ~Qe7(f)- ©)

the binary classification setting, by relating the Wassénst i
distance and Dudley metric to the margins of the Lipschitd [3 Let F, be the set of all real-value_d mea_surable functlons_on
and bounded Lipschitz classifiers respectively and MMD & tH/ and leto., be the convex function defined as [ (7). It is

Parzen window classifier [30], [35] (sé@rnel classification €3Sy t0 show thap(u) = u. Comparingys in () to Dy

rule [36, Chapter 10]). in @) through D, 5 in (6), we see thatyy = Dy, 5+ and

- ; ; = Dy .. This meansys is obtained by fixingey to ¢,
We bel th It ted in th ddress T s
e believe The resulls presented I IS paper & r?% Dy 5 with J as the variable and, is obtained by fixing

3WhenP andQ have disjoint supportD4 (P, Q) = +oo irrespective of the F 1o, in D“b"g with ¢ as the variable. This prOVIdeS a nice

properties ofM, while s (P, Q) varies with the properties aff. Therefore, T€lation b_etWeeW'f and quv. |eaqir_19 to the f0.||0Wing simple
in such casesys (PP, Q) provides a better notion of distance betwdeand result which shows that, is “trivially” a ¢-divergence.
Q.



Theorem 144, is a ¢-divergence):Let F, be the set of Lemma 3:For¢ € ®, D, is a pseudometric ow?, if and

all real-valued measurable functions 6h and let only if ¢ is of the form
6. (t) = Ot = 1] + ooft # 1]. ) o(u) = a(u— 1[0 <u< 1]+ fu—Du>1], (9)
Then for somes > a.

_ _ _ Before we prove Lemmf]3, we need the following lemma
P,Q) = Dy, (P,Q) = 0[P = Q] + oo[P . (8 O )
1. (B Q) « Q) [[ Q+oclP#£Ql- (@) from [37], which is quite easy to prove. Lemia 4 shows that

Conversely;y5(P,Q) = Dy(P,Q) = 0[P = Q] + 0[P # Q] Dy(P,Q) in (I0) associated witlp in (9) is proportional to
impliesF = JF, and¢ = ¢,. the total variation distance betwe@and Q. Note that the
total variation distance betwedh and Q can be written as

Proof. () simply follows by usingJ, and ¢, in s Jos [0 — q| dX, wherep andq are defined as in Lemnia 4.

and Dy or by using¢i(u) = w in (). For the converse,
note thatDy(P,Q) = O[P = Q] + oo[P # Q] implies Lemma 4 ( [37]): For ¢ in (9),

#(1) = 0 and [ ¢(dP/dQ) dQ = oo, VP # Q, which means B—a

¢(x) = 00, Vz # 1 and sop = ¢,. Considerys(P,Q) = Dy(P,Q) = T/ Ip — gl dA, (10)
77, (P,Q) = sup{Pf —Qf : f € F,}, VP,Q € £. Suppose M

F C 7,. Then it is easy to see that(P,Q) < s, (P,Q) for for anyP,Q € &, wherep andq are the Radon-Nikodym
someP,Q € 2, which leads to a contradiction. Therefore@erivatives ofP andQ with respect to\.

F=79. u Proof of Lemmal3: (=) If ¢ is of the form in [9), then

From [B), it is clear thatys, (P,Q) is the strongest way to by Lemma#, we havd,(P,Q) = 252 [, [p—g| dA, which
measure the distance between probability measures, amd isifi @ metric onZ, if 8 > « and therefore is a pseudometric on
a very useful metric in practiéWe therefore consider a moreZx. If 3 = «, Dy(P,Q) = 0 for all P, Q € &, and therefore
restricted function class thafi, resulting in a variety of more is @ pseudometric or?,.

intergsting IPM§, _including the Dudley metric, Wa_sser_stei(<:) If D, is a pseudometric o, then it satisfies the
metric, total variation _d|stance, (_etc. Now, the questlorfol_s triangle inequality and X = Q = Dy(P,Q) = 0) and
what other, more _restrlcte_d function classedoes there _eX|st therefore by [37, Theorem 2 is of the form in [9). -
a ¢ such thatys is a ¢-divergence? We answer this in the

following theorem. To this end, we introduce some notation. Remark 5: (on the proof of Lemnia Fheorem 2 in [37]
Let us defineZ, as the set of all probability measure®, Says thatD, satisfies P = Q < Dy(P,Q) = 0) and the
that are absolutely continuous with respect to sardinite  triangle inequality if and only if is of the form in [9) for
measure). ForP € 2, letp = & be the Radon-Nikodym some/3 > a. In that case, the strict inequality between
derivative of P with respect to). Let & be the class of all @hdj is needed such that is strictly convex for P = Q <

convex functions : [0, 00) — (—o0, oo] continuous ab and Ds(P,Q) = 0) to hold. In LemmaB, we only needt = Q =
finite on (0, c0). D4 (P, Q) = 0) to characterize for D, to be a pseudometric
o N and so a trivial change in the proof of Theorem 2 in [37] yields
Theorem 2 (Necessary and sufficient conditionsjt 3 C 4 i (@) with an inequality that is not strict betweenand 3.

F, and ¢ € ®. Then for anyP,Q € Z,, v+(P,Q) = .
D4(P,Q) if and only if any one of the following hold: ;ro‘)f ngTheortan{i]Z: (=) Suppose(i) holds. Then for

. o anyP,Q € #,, we have

() 5 =1{f ISl < 252}, yEQE

du) = a(u— 1[0 < u < 1]+ Bu — 1)[u > 1] for

2 (P, Q) = sup {IIP’f _Qfl: Ifle < B2 a}

somea < § < oo. 2
() F={f:f=c, ceR), — L pr - Qf e < 1}
d(u) = a(u — Du > 0], a € R. 2
e g @ pyp0)
The proof idea is as follows. First note thas in @) is a 2 Ju AN

pseudometrﬁon 2, for anyJF. Since we want to provesy =
Dy, this suggests that we first study the conditions¢ofor where(a) follows from LemméLJ.

which D, is a pseudometric. This is answered by Lenitha 3 Suppos(ii) holds. Themy (P, @) = 0 and Dy (P, Q) =

which is a simple modification of a result in [37, Theorem Z]C.X Jara9(p/a)dX = o fy, (p — q)dA = 0.

(<) Supposeys(P,Q) = Dy(P,Q) for any P,Q € 2.
Since vy is a pseudometric o’y (irrespective of), D,

4UnlessP and Q are exactly the sameys, (P,Q) = +oo and therefore IS @ pseudometric on”,. Therefore, by Lemmal 3p(u) =
is a trivial and useless metric in practice. afu =10 <u < 1]+ B(u — 1)Ju > 1] for somes > a.
5Given a setM, ametricfor M is a functionp : M x M — R, such that Now. let us consider two cases.
(i) Y, p(z,z) = 0, (i) Va,y, p(z,y) = p(y, ), (i) Va,y,2, p(z,z) < '
p(x_,?) + p_(_y,z)f, tﬁnd (iv) p(t;my) f: 0 :t> xU:ka A psetu_domet(;;: only case 1:6 > o
satisfies(i)-(iii) of the properties of a metric. Unlike a metric s ,0)s _ .
points irs)a( p)seudomtftricpspace need not be distinguishahle:?rel(ay hpegve By Lemma [4, D¢(]Pv Q) = 5—2(1 fM |p - q| dX. Since
p(z,y) =0 for z # y. ’yg(P,Q) = D¢(P,Q) for all P,Q € £, we have



v7(P,Q) = B%"‘ Sy o —qldx = B%"‘ sup{|Pf — Qf| : to R [40] as the closed form expression for the Wasserstein
I flloo <1} =sup{|Pf — Qf| : || flloc < ﬁ%o‘} and therefore distance is known only foR (see footnot&l6). In our case,
F={f:|flloo < 5;2&}_ the results in Sectiopn III-A show that the estimation of abov
mentioned IPMs is possible without any difficulty evenRA
Case 2:f =0 (d > 1) and therefore can be used in testing applications.
$u) = afu —1),u > 0,a < co. Now, Dy(P,Q) = In Section[II[-B, we present the consistency and conver-
Ju a9(p/q) A\ = a [y, (p—q) = 0 for all P,Q € 2,. There- gence rate analysis of these estimators. To this end, in-Theo
LS;?CQ?;TEEA(S;; Elléfg |]P’€; f_e(@;’ | ]ijo fo(éj?"T%ig ||€q frAn rem[9, we present a general result on the statistical censigt
) A Pr=Qf. , ;

. tant ol ie.F — {f:f— B of the estimators of IPMs by using tools from empirical
meansf is a constant o/, i.e., ¥ ={f: f=c, c€R}. m process theory [9]. As a special case, in Corollary 10, we

Note that in Theoreril2, the cas@¥ and (ii) are disjoint show that the estimators of Wasserstein distance and Dudley
asa < [ in case(i) and o« = 3 in case(ii). Case(i) metrics arestrongly consisteni.e., suppos¢6;} is a sequence
shows that the family ofp-divergences and the family of of estimators ob), theng, is strongly consistent #; converges
IPMs intersect only at the total variation distance, which.s. to# as! — oo. Then, in Theoreni_12, we provide
follows from Lemmal#. Cas¢ii) is trivial as the distance a probabilistic bound on the deviation betwegn and its
between any two probability measures is zero. This reselstimate for anyd™ in terms of the Rademacher complexity
shows that IPMs andg-divergences are essentially different(see Definitior_Il1), which is then used to derive the rates of
Theoreni 2 also addresses the open question posed by Reidamyergence for the estimators of Wasserstein distanadiepu
Williamson [33, pp. 56] of “whether there exiStsuch thatyy metric and MMD in Corollary_IB8. Using the Borel-Cantelli
is not a metric but equal®,, for some¢ # ¢ — |t —1|?" This lemma, we then show that MMD is also strongly consistent.
is answered affirmatively by cagi#) in Theoreni2 ass with The results in this section show that IPMs (especially the
F={f: f=c ceR}is apseudometric (not a metric) onWasserstein distance, Dudley metric and MMD) are easier to
2, but equalsD, for ¢(u) = a(u—1)[u > 0] # u+— |u—1|. estimate than the KL-divergence and the estimators exhibit
better convergence behavior than the estimators of the KL-
divergence [27], [28]. In Sectidn II[IC, we present simidat

. o results to demonstrate the performance of these estimators
Suppose one wishes to compute the Wasserstein distance &ince the total variation distance is also an IPM, we discuss

Dudley mgtric betvv_eeIf_P an_d@. This is not straightforward as ;¢ empirical estimation and consistency in Secfior TII&y.

the explicit calculation is difficult for most concrete expisll  jting earlier work [41], we show that the empirical estiorat
Similar is the case with MMD ang-divergences for certain o he total variation distance is not consistent. Since the
distributions, where the explicit calculation is not sife (5| variation distance cannot be estimated consisteftly
forward. Therefore, one approach to compute the distanggeqrem b, we provide two lower bounds on the total
betweenP andQ is to estimate it from finite samples drawn riation distance, one involving the Wasserstein distanc
|.|.d.fr_om]P’andQ and hope that thg estimate converges to thg, 4 Dudley metric and the other involving MMD. These
true distance with large sample sizes. The same problempfnds can be estimated consistently based on the results in
estimating the distance betweBrandQ appears in statistical gection[II-B and, moreover, they translate to lower bounds
inference applications, e.g., the two sample problem, &/ffter ., ihe KL-divergence through Pinsker’s inequality (see] [29

andQ are known only through random i.i.d. samples. and references therein for more lower bounds on the KL-
To this end, the non-parametric estimationsedivergences, divergence in terms of the total variation distance).
especially the KL-divergence is well studied (see [27],]]28

[39] and references therein). Since IPMs apdivergences _ o o

are essentially different classes of distance measuregon A. Non-parametric estimation of Wasserstein distance |&ud
Section[1I[-4, we consider the non-parametric estimatién é¢netric and MMD

IPMs, especially the Wasserstein distance, Dudley metrit a | ot {xV x{V . x1and{x® x{¥ ... xP1 be
MMD. We show that the Wasserstein and Dudley metrics caid. samples drawn randomly frofhandQ respectively. The

be estimated by sc_)lving linear programs (see T_heo@ms 6 &ipirical estimate ofy+(P, Q) is given by
[7) whereas an estimator for MMD can be obtained in closed

form (see Theoreilnl 8). These results are significant because t
our knowledge, statistical applications (e.g. hypothésigs) 15 (P, Qn) = ?g
involving the Wasserstein distance [ (3) are restrictety on

whereP,,, andQ,, represent the empirical distributions Bf
5The explicit form for the Wasserstein distance [d (3) is knofor andQ, N = m + n and
(M, p(z,y)) = (R, |z — y|) [16], [38], which is given asiV; (P,Q) = '

I1l. N ON-PARAMETRIC ESTIMATION OF IPMs

N ~
> OYif(X)

i=1

; (11)

S 1Fe () = Fy () du = [, |Fe(x) — Fo(a)| dr, where Fe(z) = g_[%  X=xO 12)
P((—o0,2]) and F ' (u) = inf{z € R|Fp(z) > u}, 0 < u < 1. It is easy (R i 5 X, =X®@"
to show that this explicit form can be extended(R¥?, || - ||1). However, the " ’

exact computation o#1 (P, Q) is not straightforwardfor allP and Q. See  The computation P in is not straiahtforward
Section 1= for some examples whel®; (P, Q) can be computed exactly. P Ofizr (P, Q) in (1) 9

Note that sinceR¢ is separable, by the Kantorovich-Rubinstein theorerdOF @Ny arbitraryd. In the following, we restrict ourselves to
W (P,Q) = W1(P,Q), VP, Q. Fw = A{f : Iflle <1} Fs = A{f : |flr < 1} and



N
Fr = {f : |Ifll=« < 1} and compute[(J1). Let us denote _ZN' N
W .= YFuw 6 = Y7, and'yk = Y- ﬁ(]P)maQn) B . Y;ai’ (19)

Theorem 6 (Estimator of Wasserstein distandedr  all

€ 10, 1], the following function solved(11) fo¥ = Fy: L* — max jaf — aj] 7 (20)
xi#X; p(Xi, X;)
«(z):=a min_ (af + p(z, X; _
fa(@) =1 N( " ) and {a*}}, solve the following linear program,
+(1—a) max (o] —p(x, X;)), (13) v
where e Z;Yiai
N i=
W (P, Qn) =Y Yia}, (14) st —bp(Xi, X;) < a; — a; <bp(Xy, Xj), Vi, j
i=1 —c<a;<c Vi
and {a*}}, solve the following linear program, b+c<1. (21)
N Proof: The proof is similar to that of Theorefd 6. Note
max ZYiai that
GO STY
St —p(Xe, X) S 0= 0y < p(X6 X)) Y03 (A8) 12 g + e = sup LD IO g 17
N = ( ) THy P(%y) xeM
Proof: Consider W (PP,,,, Q,,) = sup{}_,_; Yif(X;) : 1F(X) = F(X5)]
[ fllz < 1}. Note that > nax TXJ)] +max | (X)),
p— / . J— . .
1> ||f||L = sup |.f(x) fI(I )| > max |f(Xz) f(XJ)|’ which means
x#z! p(ZC,:E ) Xi#X; p(Xian) N
which means B(Pp,, Q) < sup { > Yif(X) : max |£(X))|
N i=1 ¢
(P, Qn) < sup ; f(Xi) +erlj§j LX) S 1}. (22)

st max &)= (&)l <1. (16) Leta; := f(X;). Therefore 3(P,,,Q,) < S°N, Y;a}, where

The right hand side of {16) can be equivalently written as N
max Z 171-(11-
=1

N
p YT (X) e
=1 a; — Ay
. s.t. max ———— + max|aq;| < 1. 23
St —p(Xi, X;) < F(Xs) = F(X;) < p(Xi, X;), Vi ] B P0G X e 23)
Let a; = f(X;). Therefore, we havelW(P,,Q.) < |ntroducing variables andc such thatmaxx, «x, '“T_‘”_‘ <

N % " . ; i p(Xi,Xy) =
> iz Yiag, Wher_e{a_i iN_zl 30|V? the I|ngar B\rfogra_lm '_’EGLE’)-b and max; |a;| < ¢ reduces the program ifn_(23) tEiZl). In
Note that the objective i (15) is linear ffu, };_, with linear  aqdition, it is easy to see that the optimum occurs at the thoun
inequality constraints and therefore by Theolderh 25 (see tg@/ of the constraint set and therefarex x, - lai—a;]

Appendix), the optimum lies on the boundary of the constraiﬁlaxl la;/ = 1. Hence, by Lemm& 21 (seeXthp(aSX,&gé)(andix)
Ia;‘_a;‘ 1 (2 . 1 )

set, which meansnaxx;, £ x; p(XiX;) 1. Therefore, by , in (I7) extendsf defined on{Xi,...,X,} to M, ie.,
Lemmal20 (see the Appendixf, on {Xi,...,Xn} can be ¢ (X;) = f(X;) and||ga|l5L = ||f|l5L = 1. Note thath,
extended to a functiory, (on M) defined in [(IB) where in (I8) is the Lipschitz extension afto M (by Lemmal2D).
fo(Xi) = f(Xi) = af and| fallz = [|f|lL = 1, which means Thereforeg, is a solution to[(T1) and{19) holds. m

« IS @ maximizer of andv (P,,,Q,) = N Ya¥*. W )
J () ( Qn) = 2 Vi Theorem 8 (Estimator of MMD)For & = JF, the follow-

Theorem 7 (Estimator of Dudley metrickor all o € ing function is the unique solution t6{1L1):
[0,1], the following function solved (11) fa¥ = F5:

N
1 ~
* . f = ~ }/7,]{ '7Xi ) (24)
ga(z) 1= max (—i_rg‘fl_%N |a}|, min <ha(x),i_rgjcy§N |ay] I 3200 Yk (., X3)lac ; )
(17) and
where
N _ N o
ha(z) = o _min (af + L*p(z, X;) WP, Q) = (D Vik(L X)) = | D ViVk(Xi, X;).
=1 K

H(La) max (a} ~ Lplz, X.)). (18) o (25)



Proof: Consider (P, Qn) = sup{>iL, Y;f(Xi) : supjeq||Pimf — Quf| — Pf — Qf|| < supjey |[Pof —

|| fll#¢ < 1}, which can be written as Quf —Pf+Qf| < supses[|Pimf — Pl + |Quf — Qf|] <
N supjeg P f — Pf| + supses [Quf — Qf|. Therefore,

WP, Qu) = sup (£,Y Yik(,X))sc, (26) by Theorem [, supses|Pmf — Pfl == 0,

Ifllse<t 3= supseq [Qnf — Qf| == 0 and the result follows. [

where we have used the reproducing propertyiof.e..Vf € The following corollary to Theoref 9 shows tHat (P, Q,,)
H, Ve e M, f(z) = (f,k(.,,x))5. It is easy to see that theandﬁ(ﬂpm’@n) are strongly consistent.
objective function in[(ZB) is linear irf and the constraint set is

convex inf and therefore by Theorem]25 (see the Appendix), Corollary 10 (Consistency ofi” and 3): Let (M,p) be
the optimum occurs on the boundary of the constraint sef, i.8 totally bounded metric space. TheplV (P,,,Q,) —
{f € 5 : ||flls = 1}. The Lagrangian function associated? (P,Q)| <= 0 and |3(P,,Q,) — B(P,Q)] == 0 as
with (28) is given by m,n — oo.

N o Proof: For any f € Fy,

T = (£, > Vik(, Xi))oc = M(f, fal” = 1), (27)
=l f(z) < SUBIf(x)I <sup|f(z) — f(y)] <
S x,y

where X > 0. Minimizing J with respect tof gives . )
1f1lz sup p(x, y) < || f]|diam(M) < diam(M) < oo,
z,y

[ /lls¢ 5= 5 Lo
f="57 D Yk Xi) = 5 D Vik(, X)),
i=1 i=1 where dianiM) represents the diameter dff. Therefore,
Ve e M, F(z) < diamM) < oo, which satisfiegi) and (ii)
in TheorenP. Kolmogorov and Tihomirov [42] have shown
that

which impliesA = || Zfil Yik(., X;)||s¢, therefore resulting
in f as in [24). Using thisf in (26) with k(X;, X;) =
(k(., X:), k(., X;))gc yields [25). |

The above result related to MMD also appears in [17]. \/\l’;{(6 T |- lloo) <N(E M, p)log (2 {2dian‘(M)w N 1) .
presented here for completeness. P el =y € 8

Since H(e, Fw, L1(Pr,)) < H(e,Fw, | - |lw), the condi-
tions (iii) and (iv) in Theorem[® are satisfied and therefore,

In SectionII[-A, we presented the empirical estimators qfy (P,,,Q,) — W(P,Q)| <% 0 as m,n — oo. Since
W, 3 and~y. For these estimators to be reliable, we need them, ¢ Fyy,, the envelope function associated with is upper
to converge to the population values @sn — oo. Even if pounded by the envelope function associated with and
this holds, we would like to have a fast rate of convergenge(s, 55, || - || o) < H(e, Fw, || - || )- Therefore, the result for
such that in practice, fewer samples are sufficient to obtainfollows. ]
reliable estimates. We address these issues in this sidisect )

Before we start presenting the results, we briefly intro2milar to Corollaryl1D, a consistency result for can be
duce some terminology and notation from empirical proceB&0Vided by estimating the entropy numberdof. See Cucker
theory. For anyr > 1 and probability measur&), define and Zhou [43, Chapter 5_] for the est!mates of entropy_numbers
the L, norm ||fllo.r == ([ |f]" dQ)V/" and let L,(Q) de- for variousH. However, in the foIIow.mg,we adopt a.dlfferent
note the metric space induced by this norm. Twvering &PProach to prove the strong consistencyypf To this end,
number A(s, 7, L,(Q)) is the minimal number ofL,(Q) We first provide a general result on the rate of convergence

B. Consistency and rate of convergence

balls of radiuss needed to coved. H(s, ¥, L, (Q)) := of v5(P,,,Q,) and then, as a special case, obta?n the_ rates
log N(¢,F, L.(Q)) is called theentropy of F using the of convergence of the estimators Wf, 6_ and~;. Using this
L,(Q) metric. Define the minimal envelope functiafi(z) := result, we then prove the strong consistencyypf We start

supsey | f(2)]. with the following definition.

We now present a general result on the consistency Ofpefinition 11 (Rademacher complexity)et F be a class
75 (P, Qn), which simply follows from Theoref 22 (see theyt functions onis and {o;}7", be independent Rademacher

Appendix). random variables, i.e., Rr; = +1) = Pr(o; = —1) = 3. The
Theorem 9:Suppose the following conditions hold: Rademacher process is defined @s>_." , oi f(z:) : f € F}
() [FdP< oo for some{x;}!”, C M. The Rademacher complexity over

(i) [FdQ < ~. is defined as

(i) Ve >0, LH(e,F, L1 (P,)) — 0 asm — o Lo

(iv) Ve >0, L1H(e, T, Li(Qy)) 2. 0asn — oco. Ry (Fi{xi} ) == EJSIIGII; — Z;Uif($i) . (29)
Then,|v5 (P, Q) — 75 (P, Q)| £% 0 asm,n — oo.

We now present a general result that provides a probabilisti

Proof: Consider |v5(P,.,Q,) — ~5(P, L
s Qn) (B Q) bound on the deviation ofs(P,,, Q) from 75(P, Q).

Supfeirmmf - Qufl - supfe:T“P)f - Qf]

IA



Theorem 12:For anyJ such that := sup,c,, F(z) < oo, R, (F; {Xi(2)}?:1) 2, 0asn — oo, then [v5 (P, Qp) —
with probability at leastl — 4, the following holds: v(P,Q) =% 0 as mn — oo. Also note that if

a1 1 Be@{XUYm) = Oe(rm) and Ry(F{XP}r,) =
Y5 (P, Qn) — 75 (P, Q)| < /1812 log 5 (ﬁ + %) Oo(ry), then from [3B) and(34)y5 (P, Q) — 75 (P, Q)|
0 @) Op.o(rm V m™ Y2 4+ 1, v n=2) asyg (P, P) = Op(rm
+2R (F{X;}) + 2R (F3{X;7})(30) m~1/2) andyg(Qn, Q) = Og(r, V n~'/2), wherea V b :=
Proof. From the proof of Theorenil9, we havemax(a, b). The following corollary to TheorelﬂZ provides
e (P, @n) — 75(B,Q)] < supjey [Pmf — Pf| + the rate of convergence fa#, 3 and~, (for a fixed k), by

supcg |Qnf—Qf|. We now bound the termsip ;- [P, f — choosing a specifiG.

Pf| and sup;cy [Qnf — Qf|, which are the fundamental Corollary 13 (Rates of convergence o, 5 and y;):

guantities that appear in empirical process theory. (i) Let M be a bounded subset ¢R<,|| - ||,) for some
Note thatsup;cg |Pnf — Pf| satisfies [74) (see the Ap-1 < s < co. Then,|W (P,,, Q,) — W (P, Q)| = Op.(rm+7n)

pendix) withe¢; = %’ Therefore, by McDiarmid's inequality and |3(P,,, Q,) — 3(P,Q)| = Op o(T'm + 1), Where

in (79) (see the Appendix), we have that with probability at

<l

i - —1/2] d=1
leastl — 2, the following holds: _Jm ogm,
4 T'm { m_l/(d+1), d 2 9 . (35)
202 4
sup [Py, f —Pf| <Esup [Pp f —Pf|+1/ —log ¢ In addition if M is a bounded, convex subset @, || - | ;)
feg feF m )

with non-empty interior, then

(a) 1 « /202 4
< 2Esup | — E crl-f(Xi(l))’ + Llog—,(3l) m=1/2 d=1
fegim i m 0 T'm =

m~2logm, d=2. (36)
where (a) follows from bounding Esup ¢y [P f — Pf] m/4, d>2

by using the symmetrization inequality in[_j76) (se%i) Let M be a measurable space. Suppdseis mea-
the A_ppendlx). Not_e that thg_expectatmn in the segyraple and sup,cy k(z,2) < C < oo Then,
ond line of [31) is taken jointly over{s;}?, and Y% (P, Q) 7k (P, Q)| = Op.g(m—"/2+n~1/2). In addition,
(XY Esupper |0 0if (XV)| can be wiitten 1y, (P, Q,) — w(P.Q)| =% 0 asm.n — o, Le., the
as EE, sup ey ’% s Gif(Xi(l))é where the inner ex- estimator of MMD is strongly consistent.

pectation, which we denote a&,, is taken with re- Proof: (i) Define R (F) = R,.(J; {Xf“};’;l). The
spect to{c;}7, conditioned on{Xf”};’;l and the outer generalized entropy bound [34, Theorem 16] gives that for
expectation is taken with respect t@Xi(l)};’;l. Since everye >0,

Eosup eq | = >0, o f(X™M)| satisfies [74) (see the Ap- 43 [
pendix) withe; = 22, by McDiarmid’s inequality in[(75) (see R, (F) < 2 + = VH(T,F, La(Py,)) dr. (37)
the Appendix), with probability at leadt— 2, we have e/4
m m Let § = JFy . Since M is a bounded subset @&?, it is
E sup 1 Z Uif(Xi(l)) < E, sup 1 Z Uif(Xi(l)) totally bounded and therefore the entropy numbefdn (37) can
feF|m = feF|m — be bounded through (28) by noting that
202 4 C C
+/ T log . (32)  H(r.Fw, La(Pm)) < H(r,Fw, || llsc) < g5 + 7. (38)
Tying (31) and [(3R), we have that with probability at leasvhere we have used the fact that'(c,M,| - ||s) =
1 — 3, the following holds: O(E,1 < s < oo andlog([z] +1) < z + 1[1 The

T 1 constantsC; and C, depend only on the properties aff
?UI;Ime _Pf| < 2R (F; {Xi(l)}?ll) + n: log 5 and are independent af Substituting[(3B) in[(37), we have
c:
(33) 42 e
Performing similar analysis fotup ;. 5 |Q,. f — Qf|, we have 26t NZ VH(r.Fw. Lo(By)) dr
that with probability at least — 2,

1 < 3
Ry (Fw) < inf

: we e Ve VG
82 4 < Iof |22+ 5= (W d—/z) dT]v
sup [Quf — Qf| < 2Rn(F;{XP V) + 1/ —— log . ] e AT !
reF " ?34) whereR := diam(M). Note the change in upper limits of the
The result follows by adding(33) anB{34). m ntegral fromoo to 4R. This is becaus@/ is totally bounded

andH(7, Fw, || - |l«) depends ooV (7/4, M, p). The rates in
Theoreni IR holds for an§ for which v is finite. However, to

obtain the rate of convergence fo§(P,,, Q,,), one requires  ’Note that for anyz € M C R?, [[z]lcc < -+ < [lz]ls <+ < [lzf2 <

- rxWym Ix@hn llzll < Vd||z||2. ThereforeY s > 2, N'(e, M, ||-||s) < N(e, M, ||-||2) and
an estimate OfRy.(F: {X; ‘yit,) and Bu(FAXHon): 4y <o We M, - l) < N M, V- o) = N/, M- 12):
Note that if R, (F;{X,;}",) — 0 asm — oo and UseN (e, M,]|-|2) = O(s~%) [44, Lemma 2.5].



(38) are simply obtained by solving the right hand side of th&/ is just a bounded (but not convex) subset®&f, || - ||,).
above inequality. As mentioned in the paragraph precediiag
statement of Corollary 13, we havg, Vm~—'/2 = r,, and so
the result fori (P,,, Q,,) follows.

SupposeM is convex. ThenM is connected. It is easy
to see thatM is also centered, i.e., for all subsetsCc M
with diam(4) < 2r there exists a point € M such that
[l —alls < r for all a € A. Since M is connected and
centered, we have from [42] that

t(iii) In the case of MMD, we have not made any assumptions
on M except it being a measurable space. This means in the
case ofR?, the rate is independent af, which is a very
useful property. The condition of the kernel being bounded i
satisfied by a host of kernels, the examples of which include
the Gaussian kernek(z,y) = exp(—ollz — y||3), ¢ > 0,
Laplacian kernelk(z,y) = exp(—c|lx —yl]1), o > 0, inverse
multiquadricsk(z,y) = (2 + ||z —y||3) "% ¢ > 0, t > d/2,

H(r, Fw, La(P)) < H(T, Fw, || - []oo) < _etc.__on]R‘i. See Wer%and [45] for more examples. The_result

- 2 diam(M) in (i) of Corollary also appears in [17]. As mentioned
N(Z: M, - s) log2 + log <2 [f} + 1> before, the estimates fak,, (Fx; {X"}™,) can be directly
< Oy 4 Cyr1 4 G, (39) obtained by using the entropy nhumbersiaf See Cucker and

Zhou [43, Chapter 5] for the estimates of entropy numbers for
where we used the fact that'(¢, M, | - ||s) = O(e~%). C3, variousH.

C, and C5 are constants that depend only on the properties

of M and are independent af Substituting[(30) in[(37), we

have, C. Simulation results
So far, in SectionE-A an@1I-B, we have presented the
RL (Fw) < mf %2 + Y2 V2 +0(m~?). empirical estimation o/, § and~, and their convergence
\/— /4 Td/2 analysis. Now, the question is how good are these estimiators
Again note the change in upper limits of the integral fronqracnce'? In this subsection, we demonstrate the perfarenan
 to 2R. This is becauseé(r, Fw, || - ||lo) depends on of these estimators through simulations.

N(7/2, M, p). The rates in[{36) are obtained by solving the As we have mentioned before, givEnandQ, it is usually
right hand side of the above inequality. Singg v m—1/2 — dn‘ﬁcult to exactly computé?, 5 and~y;. However, in order to
roms the result otV (B, Q) follows test the performance of their estimators, in the following,

Since 5 C Fw, we haveR. (F3) < RL(Fw) an COHSL?er some examples whé#é 5 and~, can be computed
therefore, the result foB(P,,,, Q,,) follows. The rates in[{36) €*3tY-

can also be directly obtained fg8 by using the entropy 1) Estimator of W: For the ease of computation, let us
number ofFg, i.e., H(e,Fs, || - ) = O(e~¢) [9, Theorem considerP andQ (defined on the Boreb-algebra ofR?) as

2.7.1]in (37). product measure® = @ P andQ = L ,Q", where
.. (@) (@) i R i
(il R}n(%) can be bounded as P _and@ are defined on the quei algebra ofR. In this
setting, wherp(z, y) = ||z — y||1, it is easy to show that
sz " oik( ,X(l)) d
IEO’ Sup ‘ = U Sup f} 7l>9‘f 7 P
A feg ; m W(P,Q) => W(P" Q") (41)
=1
m 1 m 1) (1)
S aik(.,Xf ))H k|3 i h(X, X)) e
7 = m I 7 ) m? _ _
’ wW(P®», QW) = / |Fpco) () — Fgaoy ()| da, (42)
R

\l > R, x M) andFp) (z) = PY((—o0, z]) [38] (see footnotEl6). Therefore,

' the computation ofV (P, Q) reduces tal computations of the
form of (42). Now, in the following, we consider two examples
whereW in (@2) can be computed in closed form. Note that we
: . I f such that the consistency
By using [@D) in [@B), it is easy to see thaf(P,,,P) — needM to be a_bounded subset®

Op(m~'?). In addition, by the BoreI-CanEeIIi Ie)mma, of W (P, Qn) is guaranteed by Corollafy]13.

Ye(Pp,P) 25 0 asm — oo. Performing similar analysis Example 1:Let M = x¢ [a;,s;]. SupposeP(®) =

for v£(Q,, Q) and adding[(33) and(B4) yields the resum Ula;,b;] andQ¥ = U]r;, s;], which are uniform distributions

. on [a;, b;] and[r;, s;] respectively, where- i <7 <
Remark 14: (i)Note that the rate of convergence f [, bi] Iri; s ]- Spectively, Wi < )

: ) : : b < s; < co. Then, it is easy to verify thai’ (P(), Q) =
and g is depe_ndent on the dimensiaf), which means thgt N g — b)/2 and W (P, Q) follows from (@1).
large dimensions, more samples are needed to obtain us

igure a-c) show the empirical estimateslif(shown
estimates ofV and. Also note that the rates are mdependeqt. th?ck dﬁéd Ii?wes) forl = 1, dp_ 2 andd = 5 respe(zctively
of the metric,|| - ||, 1 < s < 0.

Here, we chose,; = 1 , b r; = 0 ands; = 1 for all
(i) Note that whenM is a bounded, convex subset of =1,...,d such thatW (@) Q%) 1, Vi andW (P, Q) =
(R, || - ||5), faster rates are obtained than for the case whefe shown in thin dotted lines in F|gurE$ 1(a-c). Note that the

—. (40)
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W(P,Q)=0.5; d=1 W(P,Q)=1.0; d=2 W(P,Q)=2.5; d=5
0.65 11 2.7
0.6 1.05
2.6
a: 0.55F a: 1 m‘n’mumu\T\'\\'rwww%‘m_m_m_\wu\-u-*\-v\ru'rm{ a: I
£ £ 1 £ 2_5—:\?\ | 1 1T H-H-u-nuw_ulu_\uwuu.wu-m-\r'mu‘u'm_\
o | e e
E 0.5r| ¢! \TH’HH}\H m'rmm}mmmmm'r mrwmmw{ ; 0.95 ;
2.4
0.45¢ 0.9
04— ‘ ’ 0.85b—— ‘ ’ 23— ‘ ‘
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Fig. 1. (a-c) represent the empirical estimates of the Wasese distance (shown in thick dotted lines) betwéer- U[—%, %}d andQ = UJ0,1]¢ with
p(z,y) = ||z — yl|1, for increasing sample siz&, whered = 1 in (a), d = 2 in (b) andd = 5 in (c). HereU[l1,12]¢ represents a uniform distribution on
[l1,12]% (see Exampl€]l for details). Similarly,’¢e’) represent the empirical estimates of the Wassersteiardist(shown in thick dotted lines) betwen
andQ, which are truncated exponential distributions]lbﬁﬁ (see ExamplE]2 for details), for increasing sample #zeHered = 1 in (&), d =2 in (b’) and

d =5 in (¢/) with p(z,y) = ||z — y||1. The population values of the Wasserstein distance bet#eand Q are shown in thin dotted lines in (a-c;-€).
Error bars are obtained by replicating the experintéhtimes.

present choice oP and Q would result in a KL-divergence size and thatV (P,,,, Q,,) estimatesV (PP, Q) correctly, which

of +00. W therefore demonstrates the efficacy of the estimator. bacs
Example 2:Let M — >_<§i:1[0aci]- SupposeP® and @(i) are obtained by replicating the experimenttimes.
have densitie;(z) = dg;” = f_iiiz andg;(z) = d%:) = 2) Estimator ofy;: We now consider the performance of

v (P, Q). [17], [18] have shown that wheh is measurable

e "7 ragpectively, where\y; > 0, u; > 0. Note thatP(®)
p Y =Y pi > and bounded,

l—e HiCi
andQ( are exponential distributions supported[onc;] with
rate parameters; and ;. Then, it can be shown that

4(P.Q) = H [ K)o~ [ k) dote)

) ) 1 1 C.(e—kici _ e—mc?:) H
wW(PH QW) =|— - = — v ’
R P O ey = [ [ o) o) apty)
and W (P, Q) follows from (41).
Figured1(&c’) show the empirical estimates & (shown + [ k(z,y) dQ(z) dQ(y)
in thick dotted lines) fod = 1, d = 2 andd = 5 respectively. 3
Let A = (\1,. %, ), = (p1,.%, pq) @nde = (c1,.4., cq). —2/k(x,y)d]P’(:C)dQ(y) : (43)

In Figure[1(&), we chosex = (3), u = (1) andc = (5)
which givesW (P, Q) = 0.6327. In Figure[1(), we chose Note that, althoughy, (PP, Q) has a closed form i (43), exact
A= (3,2), p = (1,5) andc = (5, 6), which givesiW (P,Q) = computation is not always possible for all choicesoP and
0.9327. In Figure [1(¢), we chose\ = (3,2,1/2,2,7), Q. In such cases, one has to resort to numerical techniques
p = (1,5,5/2,1,8) and ¢ = (5,6,3,2,10), which gives to compute the integrals in_(U3). In the following, we prdsen
W(P,Q) = 1.9149. The population valuedV(P,Q) are two examples where we chooBeandQ such thaty; (P, Q)
shown in thin dotted lines in Figurés$ 1&). m can be computed exactly, which is then used to verify the
- . N i _performance ofy, (P,,,, Q,,). Also note that for the consistency
The empirical estimates in Figuié 1 are obtained by drawna)g (P, Q@n), by Corollary[I0, we just need the kernél,

N iid. samples (withm = n = N/2) from P andQ and  ; e measurable and bounded and no assumptiods @me
then solving the linear program if_(15). It is easy to S&Rquired.

that the estimate df/ (P, Q) improves with increasing sample
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Fig. 2. (a-c) represent the empirical estimates of MMD (shadw thick dotted lines) betwee® = N(0,21;) and Q = N(1,21y) with k(z,y) =

Oxp(—— |lz — yl|2), for increasing sample siz&, whered = 1 in (a),d = 2 in (b) andd = 5 in (c) (see ExamplE]3 for details). Heré(u, 021,) represents

a normal distribution with mean vectdy1, . %

., itq) and covariance matrix2I,. I, represents the x d identity matrix. Similarly, (&c’) represent the

empirical estimates of MMD (shown in thick dotted lines) weéenP and Q, which are exponential distributions (R]i (see Examplé&l4 for details), for

increasing sample siz&. Hered = 1 in (&), d = 2 in (b) andd = 5 in (¢/) with k(z,y) = exp(—

shown in thin dotted lines in (a-¢;&'). Error bars are obtained by replicating the experinizhtimes.

Example 3:Let M = R¢, P = % ,P® and Q

Then, it is easy to verify thaf; (P, Q) in (@3) reduces to

@4, Q. Suppose) — N(ii,0?) and Q1 — N(\;,62), . .
where N (11, %) represents a Gaussmn distribution with mean 2(p ) = H Ai i
p and varianceo?. Let k(z,y) = exp(—|lz — yl|3/272). Vel SN STl

Clearly k£ is measurable and bounded. With this choicékpf
P andQ, v, in (43) can be computed exactly as

Gaussi

i=1,...
to check thaty,(P,Q) = 5~

d
ER G Hm

_ (i —23)2
d 2(o2+02+72)

—2H TE

i=1

an distributions.

d/4(2

V2, 6; = +/2 for all

\/01-2—|—6’Z-2—|—7'27

shown in thin dotted lines in Figurés 2(a-®.

Example 4:Let M

R, P = ®L,P and Q

Xitti(Ni 4 pi + 2a)
+a)(pi + @) (Ni + i)

+
d
i 5

%Hm — y||1). The population values of MMD are

Figured 2(&c’) show the empirical estimates of (shown
in thick dotted lines) fow = 1, d = 2 andd = 5 respectively.

Here we chosg \;}¢, and {u;}¢_, as in Examplé12 with
2, which givesy, (P, Q) = 0.2481 for d = 1, 0.2745 for
d = 2 and 0.3592 for d = 5, shown in thin dotted lines in

as the integrals in[{43) simply involve the convolution Olleguresi]Z(érc’). "
As in the case oflV, the performance ofy;(P,,,Q,) is

Figures[2(a-c) show the empirical estimatesypf(shown verified by drawingN i.i.d. samples (withm = n = N/2)
in thick dotted lines) fol = 1, d = 2 andd = 5 respectively. from P and Q and computingyx (P, Q,) in 23). Figurel2
Here we choseq,; = 0, \; = 1, 0, =

shows the performance of;(P,,,Q,) for various sample
,d andT = 1. Using these values if_(#4), it is easysizes andd. It is easy to see that the quality of the estimate
— 2e~4/10)1/2 "which is improves with increasing sample size and thatP,,, Q,)

estimatesy; (P, Q) correctly. As in the case ofi’, the error

bars are obtained by replicating the experimzntimes.

®L QM. SupposeP() = Exp(1/);) andQ® = Exp(1/u;), 3) Estimator of 3: In the case ofi¥ and ~;, we have
which are exponential distributions did, with rate param- some closed form expression to start with ($eé (42) anld,(43))
eters\; > 0 and u; > 0 respectively. Supposg&(z,y) = which can be solved by numerical methods. The resulting
exp(—allz—yll1), @ > 0, which is a Laplacian kernel oR?. value is then used as the baseline to test the performance of
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B(P,Q)=0.5278

the estimators ofl/ and .. On the other hand, in the case

of 3, we are not aware of any such closed form expression o7
to compute the baseline. However, it is possible to compute
B(P,Q) whenP and Q are discrete distributions of/, i.e., 06
P = 37 Nidx,, Q = 357, pidz, whered i A = 1, q;
Z::l i = 1, Al 2 O, VZ, i 2 0, VZ, al’lXm, Z?, (S M Th's % 1T Lo u-\ﬁ\'\ﬂwﬂ\{nmmnmwr-m-w-rmmm}
is because, for this choice & andQ, we have 0.5
T S

BP,Q) = sup { YA F(X) = D wif(Z) I lse <1} A |

1=1 1=1 100 250 500 1000

r+s m=n=N/2

= sup { Z ei.f(vi) : ||f||BL < 1}a (44) Fig. 3. Empirical estimates of the Dudley metric (shown ihiak dotted line)
i=1 between discrete distributio®s andQ on R (see Examplgl5 for details), for

increasing sample siz&¥. The population value of the Dudley metric is shown
where 6 = (A1, .. : Ary =1y ey —ps), V = in a thin dotted line. Error bars are obtained by replicating experiment0
(X1,...,Xr, Z1,...,Zs) with 6; := (0); andV; := (V);. times.
Now, (44) is of the form of[(1l1) and therefore, by Theofgm 7,
B(P,Q) = Y17 0;ar, where{a’} solve the following linear where{a;},; solve the following linear program,

program, N
r+s max Z i;;ai
max Zé‘iai G AN G
yeelrsbie st —1<a; <1, Vi (48)

_ Vi< a —a:. < -V P . . . . .
st —=bp(Vi,Vj) < ai —a; <bp(Vi, V;), Vi, Now, the question is whether this estimator consistent. To

—c<a;<c Vi answer this question, we consider an equivalent repretimmta
b+c<1. (45) of TV given as
Therefore, for these distributions, one can compute the-bas TV(P,Q) =2 sup [P(4) — Q(A)], (49)
line which can then be used to verify the performance of AeA
B(P.,, Q). In the following, we consider a simple examplevhere the supremum is taken over all measurable sulsets
to demonstrate the performance &P,,, Q). M [41]. Note thai TV (P,,, Q,,) TV (P, Q)| < TV (Py,, P)+

TV (Qn, Q). Itis easy to see th&V (P,,,P) %4 0 asm — oo

for all P and therefore, the estimator in {47) is not strongly
consistent. This is becauselifis absolutely continuous, then
TV (P,,,P) = 2, where we have considered the skethat is

the finite support of,,, such thatP,,(4) =1 andP(A) = 0.

In fact, Devroye and Gyorfi [41] have proved that for any
empirical measurep,,, (a function depending orﬁXfl)};il
assigning a nonnegative number to any measurable setg, ther
exists a distributionP such that for alim,

Example 5:Let M = {0,1,2,3,4,5} C R, X =
(.68 18k # = (hapg) X = (0,1,2,3,4) and
(2,3,4,5). With this choice,P and Q are defined as
P =" X\idx, andQ = 3\, 11:0z,. By solving [@5) with
plx,y) = |z —y|, we get3(P,Q) = 0.5278. Note that the
KL-divergence betweei andQ is +oo.

Figure[3 shows the empirical estimates&f?, Q) (shown
in a thick dotted line) which are computed by drawiNg.i.d.
samples (withm = n = N/2) from P andQ and solving the
linear program in[(21). It can be seen ti?dP,,,, Q,,) estimates sup I@m(A) —P(A)| > 1 as. (50)
B(P, Q) correctly.m AcA 4

Since we do not know how to comput¥P, Q) for P andQ This indicates that, for the strong consistency of distrtu
other than the ones we discussed here, we do not provﬁﬁimates in total Variation, the set of probablllty measuras

any other non-trivial examples to test the performance #t be restricted. Barroet al. [46] have studied the classes
B(Pp, Qn). of distributions that can be estimated consistently inltota

variation. Therefore, for such distributions, the totatigion
distance between them can be estimated by an estimator that
. ) ) o .. lIs strongly consistent.

In this subsection, we consider the empirical estimation of 1o issue in the estimation &V (P, Q) is that the set

total variation distance, Frv :={f : |flloc < 1} is too large to obtain meaningful

D. Non-parametric estimation of total variation distance

TV(P,Q) := sup{Pf — Qf : || f]loe < 1}, (46) results if no assumptions on distributions are made. On the
o ) ) other hand, one can choose a more manageable sdbset
and the statistical consistency of the estimator. Lek .., such thatys(P,Q) < TV(P,Q), YP,Q € £ and
TV (Pm,Qn) be an empirical estimator &V (P, Q). Using . _p_ Q,) is a consistent estimator af (P, Q). Examples
similar arguments as in Theorems 6 dnd 7, it can be shownsych choice ofF include Fs and {1 oy : t € R},
that N where the former yields the Dudley metric while the latter
TV(P,,, Qn) = Zﬁa;’ (47) results in the Kolmogorov distance. The empirical estimato
P of the Dudley metric and its consistency have been presented
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in Sectiond IlI-A andIM-B. The empirical estimator of the +£inf{||f||oo :Pf—Qf >TV, f € BL(M,p)}
Kolmogorov distance betweel and Q is well studied and vV

is strongly consistent, which simply follows from the fansou > s inf{| fllz: Pf — Qf > W, f € Lip(M,p)}
Glivenko-Cantelli theorem [36, Theorem 12.4]. w

Since the total variation distance betwéand@ cannot be +% inf{||fllec : Pf —Qf >TV, f e UM)}
estimated consistently for at, Q € &, in the following, we 3 3
present two lower bounds dhV/, one involvingl¥ and 5 and ==+

the other involvingy;, which can be estimated consistently. W TV

_ which gives [(B1L).
Theorem 15 (Lower bounds diV): (i) For all P # Q, . .
P.Q € 2, we have (i) To prove [52), we use the coupling formulation 6

[47, p. 19] given by
W(P,Q)5(P,Q)

TV(P,Q) > . (51) —9
P.Q) 2 7e.0) - 500 TVP.Q) =2 inf a(X#Y), (55)
(i) Suppose’ := sup,c,s k(z,r) < oc. Then where L(P,Q) is the set of all measures ol x M with
P marginalsP andQ. Here, X andY are distributed a® and
V(P,Q) > M (52) Q respectively. Let € L(P, Q) and f € H. Then
VG
Before, we prove Theorem 115, we present a simple lemma. /M fdP-Q) ‘ ‘/ ) dA(z,y)
Lemma 16:Let : V — R and? : V — R be convex /If ) A1)
functions on a real vector spaté Suppose
(a)
a = sup{0(z) : ¥(z) < b}, (53) = /| LR, 2) — k(. y))ac dN(z,y)
where# is not constant oz : ¢(z) < b} anda < co. Then < ||f||:}c/ IE(., )|lac dA (2, ),
b= inf{¢(z) : 6(x) > a}. (34)  where we have used the reproducing propert§oh (a) and

the Cauchy-Schwartz inequality {id). Taking the supremum

Proof: Note thatA := {x : ¥(z) < b} is & CONVeX 0 c g and the infimum oven e L(P,Q) gives

subset ofl/. Since# is not constant o4, by Theoren{ 25
(see the Appendix)j attains its supremum on the boundary
of A. Therefore, any solution, to (53) satisfied(z.) = a (P Q) < Ae};%g Q) IEC W)llscdA,y)- (56)
and¢(z.) = b. Let G := {z : 6(z) > a}. For anyz € G,
() > b. If this were not the case, thern is not a solution
to &3). LetH = {z : 0(a) = a}. Clearly,z, € Hand |lk(, 2) — k(. y)llsc < Logyllk( 2) = k(- 9) 12c

so there exists am € H for which ¢(z) = b. Suppose < sty [IIFC, 2|5 + 1R, 9) 5]
inf{t(z) : z € H} = ¢ < b, which means for some* € H, = Tery T BN Yl
z* € A. From [53), this implied attains its supremum relative =1,y [\/k(flf, ) + Vk(y, y)}
to A at some point of relative interior ofl. By Theoreni 2b,

Consider

this implies § is constant onA leading to a contradiction. = 2\/611””#9' (57)
Therefore,inf{y)(z) : = € H} = b and the result in[(84) Using [57) in [56) yields[(52). m
follows. [ ]

. Remark 17: (i)As mentioned before, a simple lower bound

Proof of Theoreni_15: (iNote that|/f||, | f|lz. and on TV can be obtained a&V (P,Q) > B(P,Q), VP,Q €
| flls are convex functionals on the vector spacegMpp), 2. It is easy to see that the bound i J(51) is tighter as
BL(M,p) andU(M) = {f : M — R[[|f[lc < oo} % > B(P,Q) with equality if and only ifP = Q.
respectively. SimilarlyPf — Qf is a convex functional on
Lip(M, p), BL(M, p) and U(M). SinceP # Q, Pf — Qf (i) From [5:1),_ it !s easy to see thde(]P’,Q) =0 or
is not constant orfyy,, 5 and Frv. Therefore, by appro- W(P,Q) = 0 implies 3(P,Q) = 0 while the converse is
priately choosingy, 8, V andb in Lemmal®, the following not true. This shows that the topology mduced[bym Zis
sequence of inequalities are obtained. Defihe= 3(P,Q), COarser than the topology induced by eith&ror TV

W:=W({P,Q), TV :=TV(P,Q). (i) The bounds in[{81) an@(52) translate as lower bounds on
) the KL-divergence through Pinsker’s inequalifyt’? (P, Q) <
L=mf{||fllpr :Pf - Qf = B, f € BL(M, p)} 2KL(P,Q),VP,Q € &. See Fedotoet al. [29] and refer-
>inf{||fl|lL :Pf—Qf >3, f € BL(M,p)} ences therein for more refined bounds betw&éhand K L.
+inf{||fllc : Pf —Qf >3, f € BL(M,p)} Therefore, using these bounds, one can obtain a consistent
8 estimate of a lower bound oV and K L. The bounds in

=W inf{||fllz:Pf—-Qf > W, f € BL(M, p)} (51) and [[5R) also translate to lower bounds on other distanc
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measures on?. See [48] for a detailed discussion on theisk. Formally, the Bayes decision rule involves solving
relation between various metrics. ~

o . _ f=arg inf u(Y #sign(f(X)))
To summarize, in this section, we have considered the em- feT.

pirical estimation of IPMs along with their convergenceerat — are inf / Si N duu(a 58
analysis. We have shown that IPMs such as the Wasserstein gfe‘f* M[[y # st f(e))) du(z.v) (58)

distance, Dudley metric and MMD are simpler to eStimaRﬁhere(a b) i [a # b] is the0 — 1 loss function andi(Y" #

than the KL-divergence. _This is pecause the \_Nasse_rstg‘ n7(X))) is the Bayes risk.[(88) can be generalized by
distance and Dudley metric are estimated by solving a line blacing the0 — 1 loss function with some loss function,

program while estimating the KL-divergence involves sodyi , . A1 R — R for example the suuared-loss function
a quadratic program [28]. Even more, the estimator of MM%{W{ F1XR = R, p q ,

. ; ,b) = (a — b)2. Given L, the associated optimdl-risk is
has a simple closed form expression. On the other ha a,b) = (a —b) V ! PY IS

A o ) ined as
space partitioning schemes like in [27], to estimate the KL-
divergence, _become ingreasingly difficult to implementhﬂs t RL = inf L(y, f(z)) du(z, y)
number of dimensions increases whereas an increased number O feF
of dimensions has only a mild effect on the complexity — inf / I dP
of estimatingW, 8 and ~,. In addition, the estimators of flen?* {6 M 1(f(@)) dP(z)
IPMs, especially the Wasserstein distance, Dudley melrit a
MMD, exhibit good convergence behavior compared to KL- + (-9 /M L‘l(f(x))d@(x)}’ (59)

divergence estimators as the latter can have an arbitsoly

rate of convergence depending on the probability distiomst Where Li(a) = L(l,a), Li(a) := L(=1,a), P(X) :=
[27], [28]. With these advantages, we believe that IPMs caf XY = 1), QX) = p(X[Y = —1), e == p(M,Y =
find applications in information theory, detection theanyage +1). Here,P and Q represent the class-conditional distribu-

processing, machine learning and other areas. As an exampfs @nde is the prior distribution of class-1.
in the following section, we show how IPMs are related to Nguyenet al. [25] have shown an equivalence betwegn
binary classification. divergences (betwedh andQ) and the optimal.-risk associ-

ated with a loss-function,, that satisfied. (o) = L_1(—«a).
They showed that for each loss functidn there exists exactly
IV. IPMS AND BINARY CLASSIFICATION one corresponding-divergence such that the optimatrisk
is equal to the negative-divergence betweef® and Qf
Many previous works, e.g., [4], [25], [32] have studiedror example, the total-variation distance, Hellinger atise
the problem of relating the risk (expected loss) in binargnd x2-divergence are shown to be related to the optifal
classification problems tg-divergences (see [33, Section 1.3fisk where L is the hinge loss{(y, «) = max(0,1 — ya)),
for a list of detailed references). Since IPMs are esséptiabxponential loss I[(y,«) = exp(—ya)) and logistic loss
different fromg-divergences (see Sectibh I1), we are interestdd (y, «) = log(1 + exp(—ya))) respectivelfi In statistical
to study the relation between IPMs and binary classificatiomachine learning, these losses are well-studied and avensho
In this section, we show how IPMs, measuring the distant@result in various binary classification algorithms likepport
between class conditional distributions, appear natumlbi- vector machines, Adaboost and logistic regression. Seg [30
nary classification problems. First, in Section IV-A we pi®s  [49] for details.
a novel interpretation fof, W, TV and~, (see Theorein 18), Since IPMs andg¢-divergences are essentially different,
as the optimalL-risk of a binary classification problem.we present and prove the following result that relates IPMs
Second, in Sectioh TVAB, we relatd” and 8 to the margin (between the class conditional distributions) and thenogii
of the Lipschitz classifier [34] and the bounded LipschitZ-risk of a binary classification problem.
clasglfler respectively. Third, in Segtl—C, we disctiss Theorem 18 and associated)): Let L1(a) = —2 and
relation between;, and the Parzen window classifier [30], [35] o £
(also called the kernel classification rule [36, Chapten.10] L-1(a) = 1% LetT C J, be such thalf € 7' = —f € 7.
’ ' Then,y5(P,Q) = —RL.
Proof: From [59), we have
A. Interpretation ofg, W, T'V and~; as the optimalL-risk
of a binary classification problem a/ Li(f)dP+ (1 — a)/ L_1(f)dQ
M M

Let us consider the binary classification problem with
being a M-valued random variabley being a{—1,+1}- - /MfdQ—/Mfd]P’:Qf—IP’f.
valued random variable and the product spades {—1, +1},
being endowed with a Borel probability measyre A dis- 8This result holds even ifL does not satisfy the propertf;(a) =
criminant function, f is a real valued measurable functiofF—1(~@), Yo € R. However, such an assumption is made to completely
—1

analyze the relation betweeh and ¢.
9By choosingL1 (o) = —2andL_i(a) = e2”_ it can be shown that

(60)

on M, whose sign is used to make a classification decision
1—

The .goal is FO choose an th_at minimizes the prObab”ity of the associated optimdl-risk is the negative of the KL-divergence between
making the incorrect classification, also known as Bayes P andQ.
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Therefore, and appear as upper bounds on the margins of the Lipschitz
) and bounded Lipschitz classifiers, respectively.
RE = inf (Qf — Pf) = — sup(Pf — Qf) P oS, TeSpectively _
fes fes Theorem 19:The Wasserstein distance and Dudley metric

@ _ sup [Pf — Qf| = —(P,Q), (61) are related to the margins of Lipschitz and bounded Lipzchit
fesF classifiers as

where (a) follows from the fact that¥ is symmetric around 1 W (P, Qn) (64)
zero,ie.feTF=>—fe7. [ ] | fipllz — 2 ’

Theoreni 1B shows thats (P, Q) is the negative of the optimal 1 < B, Qn) ) (65)
L-risk that is associated with a binary classifier that cfaessi | foullBr 2

the class conditional distributionB and Q using the loss In addition, there exist§™* € Lip(M, p), f. € BL(M,p)
function, L, in TheoreniIB, when the discriminant functiorsuch that| f*|| . = || fip|l . I|f+|l 5z = || feL |52 and sigrif*),
is restricted toF. Therefore, Theorerh 18 provides a novedign(f,) are 1-nearest neighbor (NN) classifiérs.

interpretation for the total variation distance, Dudleytrite ] '
Wasserstein distance and MMD, which can be understood as Proof: Define Wiy, := W (P, Q). By Lemma[1b, we

the optimalL-risk associated with binary classifiers where th ave

discriminant function f is restricted tdF v, Fg, Fyr andFy, ) N o )
respectively. 1= Hlf{HfHL Y Yif(Xi) = Wi, f € Lip(M, P)},
Suppose, we are given a finite number of samples i=1

{(X, YO, X; € M, Y; € {~1,+1}, Vi drawn i.i.d. which can be written as
from 1 and we would like to build a classifief; € F that N
minimizes the expected loss (withas in Theoreri 18) based = inf {||f||L : ZYif(Xi) >2, f elLip(M, p)}.
on this finite number of samples. This is usually carried gutb ™" i=1
solving an empirical equivajlventNdT__(BQ), which reduced t)(1 Note that{f € Lip(M,p) : Yif(X:) > 1,Vi} C {f €
8., 75 (P, Qn) = sup{| 22,2, Yif (Xi)| : f € F} by noting | in(ar, p) - SN ¥, £(X;) > 2}, and therefore
that X := X; whenY; = 1, X® := X, whenY; = —1, ’ =t -
andf € ¥ = —f € F. This means the sign of € ¥ that 2 inf{HfHL Y f(X) > 1, Vi, f e Lip(M,p)},
solves [(I1) is the classifier we are looking for. Winn

hence proving[(84). Similar analysis foryields [65).

B. Wasserstein distance and Dudley metric: Relation to-Lips The existence off* < Lip(M,p) such that||f*|; =
chitz and bounded Lipschitz classifiers | fupllz and sigrif*) being al-NN classifier follows from

. . e . . [34, Lemmas 11-13]. However, for completeness, we provide
Thg Lipschitz clgssmer is defined as the solutigip, to the the proof of these results. To this end, let us defite B)
following program:

infpep p(a,b), p(A, B) :=infucapep p(a,b) forany A, B C

inf (Falrs M, Xt :={X;:V;=1}and X~ :={X;: Y; = —1}.
FeLip(M,p) Consider the Lipschitz classifier in{62). Then,
st.Yif(X;)>1,i=1,...,N, (62)

N S e sup M@ IWI ) — ()
which is a large margin classifier with mar@finL—. The LT 00w ploy) T XX, p(X X))
program in [[6R) computes smoothfunction, f that classifies ‘ Y; - Y| 9
the training sequence,(X;,Y;)}Y, correctly (note that the > max ———2c = =: L*. (66)

- X. . . . + —
constraints in[(62) are such that s{gi(X;)) = Y;, which XAX p(Xi Xg) - p(XT, X7
meansf classifies the training sequence correctly, assumigp, any solution,fi, to (62) satisfies| fip|r = L*. Let
the training sequence is separable). The smoothness is chptX;) = Y;. Clearly, fi, satisfies the constraints if_(62).
trolled by|| f| . (the smaller the value dff||., the smoothef  Therefore, by Lemma 20 (see the Appendix),
and vice-versa). See [34] for a detailed study on the Ligschi L . : * ‘
classifier. Replacing f||. by || f|| 5z in (€2) gives the bounded falz) := O‘i:rf,l,lfl,N(K +L7p(x, Xy))

Lipschitz classifier,fg. which is the solution to the following +(1—a) max (Y; — L*p(z,X;)), (67)
. i=1,...,N
program:
) is a solution to[(6R) for anyv € [0,1]. Considerf., which
inf | fllsL : . 2
feBL(M,p) can be rewritten as:
stYf(X;)>1,i=1,...,N. (63)

fi(a) = %min(L*p(x,Xﬂ +1,Lp(z, X7) = 1)

Note that replacing || by || f||s¢ in (€2), taking the infimum 1
over f € H, yields the hard-margin support vector machine ~5 min(L*p(x, X7) + 1, L*p(x, X*) = 1).
(SVM) [50]. We now show how the empirical estimateslof

The 1-nearest neighbor rulefun is defined as:fun(z) = 1 if
10The margin is a technical term used in statistical machinenlag. See inf{p(z, X;) : ¥; = 1} < inf{p(z, X;) : ¥; = —1} and fyn(z) = —1
[30] for details. otherwise.



16

Considerz such thatp(z, X ) > p(z, X 7). Then, we have wherew = pt — p=, p = 37, k(, X;) and ™ =

1 B LNy 1 k(,X;). pT and p~ represent the class means
f3(2) = —5min(L p(z, X )+ 1, L*p(z, XT) — 1) associated withX*+ := {X, : V; = 1} and X~ = {X; :
1, B Y; = —1} respectively.
+§(L pla, X7) =1) The Parzen window classification rule [n{70) can be inter-

preted as anean classifiein H: (w, k(.,x))sc represents a
hyperplane infH passing through the origin withy being its
Similarly, let us consider: such thatp(z, X +) < p(z, X ). normal along the direction that joins the meaps, and .~

1
=3 max(L*p(z, X~) — L*p(x, X 1), —2) <0.

Then in 3. From [25), we can see tha(P,,, Q,) is the RKHS
1 distance between the mean functions, and ..
fi(z) = 3 min(L*p(z, X*) +1,L*p(z, X ™) — 1) Supposd|ut 3¢ = ||~ ||3¢, i-e., pT andp~ are equidistant
1 from the origin inJ. Then, the rule in[(40) can be equivalently
—i(L*P(%Xﬂ -1) written as
- %min(L*p(:z:, X7) = L*p(z, X*),2) > 0. y =sign(|[k(,x) — p~[I5 = k(. 2) —ut3) . (7D)
Therefore, sigtfs ) represents a-NN classifier. Choosg* =  (Z1) provides another interpretation of the rule[in] (69..ias
fi. 2 a nearest-neighbor rule: assignatahe label associated with
“The proof for the existence of, is similar to that off*. the meanu™ or x~, depending on which mean function is
Consider, closest tok(., x) in H.
(@) = f()] The classification rule in((69) differs from the “classical”
Ifllsr = sup 2L sup | f(2)] Parzen window classifier in two respects. (i) Usually, the
atveM  P(2,Y) zeM kernel (called the smoothing kernel) in the Parzen window
> max |f(Xi) = f(X))] + max | F(X))] rule is translation invariant iR?. In our case,M need not
T OXi#X p(Xi, Xj) i ‘ beR? and k need not be translation invariant. So, the rule in
S Y: — Y] v (€9) can be seen as a generalization of the classical Parzen
Z e o x,) Tmax window rule. (i) The kernel in[{(89) is positive definite vk
92 . in the classical Parzen window rule whéraneed not have to
- m + 1=1 + 1. (68) be SO.

- . : Recently, Reid and Williamsoet al. [33, Section 8, Ap-
So feL satisfies|| feL |5 = L* + 1. Let fp (X;) = Vi, which pendix E] have related MMD to Fisher Discriminant analysis
satisfies the constraints of thg program@](63).. Therefoye, [36, Section 4.3] i and SVM [50]. One approachto relate
!.emma[Z_l (see the Appendix), = max(_laml_n(fw _1))’ MMD to SVM is along the lines of Theorem 119, where it is
is a solution to[(6B) for anyx € [0, 1], where f,, is defined easy to see that the margin of an SVM, computeql—ﬁ}ﬁr,
J

in . Now, based on the proof of sigfi) being al-NN
) P @h2) 9 can be upper bounded bw, which says that the

classifier, it is easy to check that si@gn ) is a1-NN classifier. 2 )
2 smoothness of an SVM classifier is bounded by the inverse

Choosef, = h1. [ ]
2 of the MMD betweenP and Q.
The significance of this result is as follows. {64) shows that

Ifinlle > wEemgsy, Which means the smoothness of the
classifier, fip, computed ad fip||z is bounded by the inverse
of the Wasserstein distance betwekpn and Q,,. So, if the
distance between the class-conditionBland Q is “small”
(in terms of W), then the resulting Lipschitz classifier is les
smooth, i.e., a “complex” classifier is required to classig
distributionsP and Q. A similar explanation holds for the
bounded Lipschitz classifier.

V. CONCLUSION& DISCUSSION

In this work, we present integral probability metrics (IPMs
from a more practical perspective and prove several novel
Qroperties. We first relate IPMs tizdivergences and show that
they are essentially different. More specifically, we prtivat
total variation distance is the only “non-triviat}-divergence
that is also an IPM. We then study the consistency and
convergence rates of the empirical estimators of IPMs and
O&Oow that the empirical estimators of Wasserstein distance

udley metric and maximum mean discrepancy are strongly
] o o ) consistent and have a good convergence behavior. We dtastr
Consider the maximizey, for the empirical estimator of ,, |pMs naturally appear in a binary classification sefting

C. Maximum mean discrepancy: Relation to Parzen wind
classifier and support vector machine

MMD, in ([24). Computingy = sign(f(z)) gives first by relating them to the optimdl-risk of a binary classifier
41, % Sy Kz, X)) > % Sy g k(z, X5) and, second, by relating the Wasserstein distance to thgimar
-1, % Sy k(z, Xi) < %Zy}lk(x,){i) ’ of a Lipschitz classifier, the Dudley metric to the margin

(69) of a bounded Lipschitz classifier and the maximum mean
which is exactly the classification function of a Parzen wind discrepancy to the Parzen window classifier. With many IPMs
classifier [30], [35]. It is easy to see thht[69) can be ramit being used only as theoretical tools, we believe that thidyst
as highlights properties of IPMs that have not been explored

y = sign({w, k(.,2))5), (70) before and would improve their practical applicability.
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De Groot [51], [52] introduced the concept efatistical moreover that for any > 0, LH(e,F, L1(Py,)) -, 0. Then
informationthat is widely studied in information theory andsup ;g (P, f — Pf) <= 0.
statistics. [4], [31] have shown that every statisticabimfia-
tion is a ¢-divergence and everg-divergence is a statistical
information. Since an IPM is trivially ap-divergence (see
Theorem$1l and] 2), it can be related to statistical inforomati

Theorem 23 ( [61] McDiarmid’s Inequality)Let X, ...,
Xn, X],...,X] beindependent random variables taking val-
ues in a setV/, and assume thgt: M"™ — R satisfies

(see Eq. (77) in [4]). If (@1, an) — f(@1, i, @ i1, x| < 6,
Another question one can ask involves the relation between (74)

IPMs and Bregman divergences. It can be shown that IPMs;, | . .. T, xh, ..., x! € M. Then for everye > 0,

and Bregman divergences do not intersect because Bregman a2

divergences do not satisfy the triangle inequality, wherea Pr(f(X1,. ., Xn) —Ef(X1,..., Xp) > €) < e T

IPMs satisfy the triangle inequality since they are pseudo-
metrics onZ?. However, recently Cheet al. [53], [54] have
studied sq_uare-r_oot metrlc_s_ based on Bregman qlve.rgencﬁademacher random variables. Then,
One could investigate conditions &hfor which v4 coincides
with such a family. 1 & 1 &
Similarly, in the case ofp-divergences, some functions of Esug Ef - N Zf(xi) N Zaif(xi) :
D, are shown to be metrics o#?, (see Theorerhl2 for the i=1 =1 (76)
notation), for example, the square root of variationalatise, o following result is quoted from [62, Theorem 32.1].
the square root of Hellinger's distance, the square root of _
Jensen-Shannon divergence [55]-[57], etc. ABsterreicher ~ Theorem 25:Let f be a convex function, and let" be
and Vajda [58, Theorem 1] have shown that certain powe?sconvex set contained in the domain pfIf f attains its
of D, are metrics on%,. Therefore, one could investigateSUpremum relative t@' at some point of relative interior of
conditions onF for which v5 equals such functions dbs. €, thenf is actually constant throughodt.

(75)
Lemma 24 ( [9] Symmetrization).et o4,...,on be i.i.d.

< 2E sup
fex
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