
Model AI Assignment:
Introduction to

Multi-Agent Path Finding
Wolfgang Hoenig

Jiaoyang Li
Sven Koenig

University of Southern California
skoenig@usc.edu

We thank NSF and Amazon Robotics for funding that enabled us to compile
this and other teaching material on multi-agent path finding.

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF)

• Optimization problem with the objective
to minimize task-completion time (called makespan) or
the sum of travel times (called flowtime)

Multi-Agent Path Finding (MAPF)

• Application: Amazon fulfillment centers
• 2003 Kiva Systems founded
• 2012 Amazon acquires Kiva Systems for $775 million
• 2015 Kiva Systems becomes Amazon Robotics

• > 3,000 robots on > 110,000 square meters in Tracy, California

[www.npr.org – Getty Images] [www.theguardian.com - AP]

Multi-Agent Path Finding (MAPF)

• Application: Amazon fulfillment centers

[Wurman, D’Andrea and Mountz]

[from: YouTube]

• Application: Amazon fulfillment centers

Multi-Agent Path Finding (MAPF)

[from: YouTube]

Multi-Agent Path Finding (MAPF)

• Application: Amazon fulfillment centers

[from: YouTube]

Robot Agent

• Simplifying assumptions
– Point agents
– No kinematic constraints
– Discretized environment

• we use grids here but
most techniques work on
planar graphs in general

Multi-Agent Path Finding (MAPF)

Stickers on the ground
establish a grid!

[from: YouTube]

• Each agent can move N, E, S or W
into any adjacent unblocked cell
(provided an agent already in that
cell leaves it while the agent moves
into it or earlier) or wait in its
current cell

• Not allowed (“vertex collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Z to Y

• Not allowed (“edge collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Y to X

Multi-Agent Path Finding (MAPF)

X Y Z

X Y

• Suboptimal MAPF algorithms
– Theorem [Yu and Rus]: MAPF can be solved in polynomial

time on undirected grids without makespan or flowtime
optimality

– Unfortunately, good throughput is important in practice!

Multi-Agent Path Finding (MAPF)

• Optimal MAPF algorithms
– Theorem [Yu and LaValle]: MAPF is NP-hard to solve

optimally for makespan or flowtime minimization

• Bounded-suboptimal MAPF algorithms
– Theorem [Ma, Tovey, Sharon, Kumar and Koenig]: MAPF

is NP-hard to approximate within any factor less than 4/3
for makespan minimization on graphs in general

Multi-Agent Path Finding (MAPF)

[www.random-ideas.net]

Multi-Agent Path Finding (MAPF)

S1 (S2) = start cell of the red (blue) agent
G1 (G2) = goal cell of the red (blue) agent

A*-Based Search

• A*-based search in the joint cell space: Optimal (or bounded-
suboptimal) but extremely inefficient MAPF solver

A2
B1

…A2
B1

A2
C1

A3
B2

Priority-Based Search

• Priority-based (= sequential) search (plan for one agent after
another in space (= cell)-time space in a given order): efficient
but suboptimal (and even incomplete) MAPF solver

wait one
timestep

First, find a time-minimal path for the
agent with priority 1.

Then, find a time-minimal path for the
agent with priority 2 that does not collide
with the paths of higher-priority agents.

Priority-Based Search

• Priority-based (= sequential) search (plan for one agent after
another in space (= cell)-time space in a given order): efficient
but suboptimal (and even incomplete) MAPF solver

• Priority-based search finds first path A1, B1, C1, D1, E1 for the green agent and then path B1, C1,
C2, C1, D1 for the violet agent. Thus, priority-based search finds a solution.

A C D E

2

1

B

The green agent
has priority 1

Priority-Based Search

• Priority-based (= sequential) search (plan for one agent after
another in space (= cell)-time space in a given order): efficient
but suboptimal (and even incomplete) MAPF solver

• Priority-based search finds first path B1, C1, D1 for the violet agent and then no path for the
green agent. Thus, priority-based search does not find a solution.

A C D E

2

1

B

The violet agent
has priority 1

Priority-Based Search

• You could implement space (= cell)-time A* with a reservation
table (specific for a particular agent) as follows

• The states are pairs (cell, t) for all cells and times
• If the agent can move from cell X to cell Y (in the absence of other agents), create direct edges

– from state (X,0) to state (Y,1)
– from state (X,1) to state (Y,2)
– …

• If the agent is not allowed to be in cell X at time t (because a collision with a higher-priority agent
would result), delete state (X,t)

• If the agent is not allowed to move from cell X to cell Y at time t (because a collision with a
higher-priority agent would result), delete the directed edge from state (X,t) to state (Y,t+1)

• Search the resulting state space for a time-minimal path from state (start cell, 0) to any state
(goal cell, t) for all times t

Priority-Based Search

• You could implement space (= cell)-time A* with a reservation
table (specific for a particular agent) but you might not want to
build it explicitly since it is often large. Rather, you never want to
generate the states or edges that you would have deleted in the
reservation table in the A* search tree

A C D E

2

1

B

…

(A1,0)

(B1,1)

(C1,2)

(D1,3) (C2,3)

(C1,4)

(D1,5) (C2,5)

Do not generate these states for the
green agent since they result in vertex
collisions with the violet agent (taking
into account that the violet agent stays
in cell D3 once it has reached it)

Think about how to detect that
there is no path for the green agent
instead of believing that the green
agent can now repeatedly move
from cell C1 via cell C2 back to cell C1
to eventually get to its goal cell E1

The violet agent
has priority 1

Conflict-Based Search

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Find time-minimal paths for
all agents independently

Conflict (here: vertex collision)

Conflict-Based Search

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

Such vertex constraints
simply correspond to one
blocked cell each in the
reservation table

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

To minimize the sum of the travel times of all agents
perform a best-first search on this tree with
• g = cost = sum of travel times of all agents (here: 10)
• h = 0

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

Conflict-Based Search

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search

• Find time-minimal paths for both agents independently, which results in a vertex collision in cell
D1 at time 3; clearly, the green agent cannot be in cell D1 at time 3 or the violet agent cannot be
in cell D1 at time 3

A C D E

2

1

B

A1, B1, C1, D1, E1 B1, C1, D1

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search
A C D E

2

1

B

the green agent is not allowed
to be in cell D1 at time 3

• Work on the leaf node with the smallest cost; impose the vertex constraint: the green agent is
not allowed to be in cell D1 at time 3; create a new child node, and replan the path of the green
agent, which results in a vertex collision in cell D1 at time 4

A1, B1, C1, C1 (= wait), D1, E1 B1, C1, D1

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search
A C D E

2

1

B

the violet agent is not allowed
to be in cell D1 at time 3

• Impose also the vertex constraint: the violet agent is not allowed to be in cell D1 at time 3, create
a new child node, and replan the path of the violet agent, which results in a vertex collision in cell
C1 at time 2

A1, B1, C1, D1, E1 B1, C1, C1 (= wait), D1

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search
A C D E

2

1

B

• Work on the leaf node with the smallest cost; impose the vertex constraint: the green agent is not
allowed to be in cell C1 at time 2 (in addition to the previous vertex constraint), create a new child
new, and replan the path of the green agent, which results in a vertex collision in cell D1 at time 4

the green agent is not allowed
to be in cell C1 at time 2

A1, B1, C1, C1 (= wait), D1, E1 B1, C1, C1 (= wait), D1

the violet agent is not allowed
to be in cell D1 at time 3

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search
A C D E

2

1

B

the violet agent is not allowed
to be in cell C1 at time 2

A1, B1, C1, D1, E1 B1, C1, C2, C1, D1

• Impose also the vertex constraint: the violet agent is not allowed to be in cell C1 at time 2 (in
additional to the previous vertex constraint), work on the child node with the smallest cost, and
replan the path of the violet agent, which results in no vertex or edge collisions

the violet agent is not allowed
to be in cell D1 at time 3

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Optimal (or bounded-suboptimal) MAPF solver that plans for
each agent independently, if possible

Conflict-Based Search
A C D E

2

1

B

A1, B1, C1, D1, E1 B1, C1, C2, C1, D1

• Work on the leaf node with the smallest cost and terminate since this node has no vertex or
edge collisions

Conflict-Based Search
with Disjoint Splitting

• Conflict-based search (without disjoint splitting) [Sharon, Stern,
Felner and Sturtevant]: Optimal (or bounded-suboptimal) MAPF
solver that plans for each agent independently, if possible

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

Conflict-Based Search
with Disjoint Splitting

• Conflict-based search with disjoint splitting [Li, Harabor, Stuckey,
Felner, Ma and Koenig]: Optimal (or bounded-suboptimal) MAPF
solver that plans for each agent independently, if possible

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the red agent must
be in cell D3 at time 4

This implies that all
other agents are not
allowed to be in cell D3
at time 4 – so the constraint
is stricter than before!

Conflict-Based Search
with Disjoint Splitting

• Conflict-based search with disjoint splitting: Optimal (or
bounded-suboptimal) MAPF solver that plans for each agent
independently, if possible

A B C D E

1 S2

2 S1 G1

3 G2

Conflict-based
search without
disjoint splitting

Conflict-based
search with

disjoint splittingPruned

Execution of MAPF Plans

[Wurman, D’Andrea and Mountz]

Use the MAPF methods here (in a small area of
high congestion but with few agents) rather than
over the whole fulfillment center

Execution of MAPF Plans

• Want to learn more about multi-agent path finding?
• Visit: http://mapf.info/

