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1 Introduction

Figure 1: A small Amazon order-fulfillment center [8].

Multi-agent path finding (MAPF) is important for many applications, including automated ware-
housing. For example, Amazon order-fulfillment centers (Figure 1) have inventory stations around
the perimeter of the warehouse (shown only on the left side in the figure) and storage locations in its
center. Each storage location can store one inventory pod. Each inventory pod holds one or more
kinds of goods. A large number of warehouse robots operate autonomously in the warehouse. Each
warehouse robot is able to pick up, carry, and put down one inventory pod at a time. The warehouse
robots move inventory pods from their storage locations to the inventory stations where the needed
goods are removed from the inventory pods (to be boxed and eventually shipped to customers) and
then back to the same or different empty storage locations to return the inventory pods [8]. Amazon
puts stickers onto the floors of their order-fulfillment centers to delineate a grid and allow for robust
robot navigation. However, path planning for the robots is tricky since most warehouse space is used
for storage locations, resulting in narrow corridors where robots that carry inventory pods cannot
pass each other. Just-in-time manufacturing is an extension of automated warehousing for which
no commercial installations exist so far. For just-in-time manufacturing, there are manufacturing
machines around the perimeter of the warehouse rather than inventory stations. Robots go back
and forth between the warehouse and the manufacturing machines, transporting raw material in one
direction and manufactured products in the other direction. Just-in-time manufacturing increases
the importance of delivering all needed raw material almost simultaneously to the manufacturing
machines.

The MAPF problem is a simplified version of these and many other multi-robot or multi-agent
path-planning problems and can be described as follows: On math paper, some cells are blocked.
The blocked cells and the current cells of n agents are known. A different unblocked cell is assigned
to each agent as its goal cell. The problem is to move the agents from their current cells to their

*Now at California Institute of Technology



respective goal cells in discrete time steps and let them wait there. The optimization objective is
to minimize the sum of the travel times of the agents until they reach their goal cells (and can stay
there forever). At each time step, each agent can wait at its current cell or move from its current
cell to an unblocked neighboring cell in one of the four main compass directions. A path for an
agent is a sequence of move and wait actions that lead the agent from its start cell to its goal cell or,
equivalently, the sequence of its cells at each time step (starting with time step 0) when it executes
these actions. The length of the path is the travel time of the agent until it reaches its goal cell
(and stays there forever afterward). A solution is a set of n paths, one for each agent. Its cost is
the sum of the lengths of all paths. Agents are not allowed to collide with the environment or each
other. Two agents collide if and only if they are both in the same cell at the same time step (called
a vertex collision or, synonymously a vertex conflict) or both move to the current cell of the other
agent at the same time step (called an edge collision or, synonymously, an edge conflict). (An agent
is allowed to move from its current cell z to the current cell y of another agent at the same time
step when the other agent moves from cell y to a cell different from cells x and y.) Finding optimal
collision-free solutions is NP-hard [9].

2 MAPF Example

Figure 2: Our example MAPF instance. Circles represent start cells. Squares represent goal cells.

Figure 2 shows an example MAPF instance with two agents, where agent 1 has to navigate from its
current cell A to its goal cell E and agent 2 has to navigate from its current cell B to its goal cell D.
One optimal collision-free solution (of cost 5) consists of path [A, C, E| (of length 2) for agent 1 and
path [B, B, C, D] (of length 3) for agent 2. The other optimal collision-free solution (also of cost 5)
consists of path [A, A, C, E| (of length 3) for agent 1 and path |B, C, D] (of length 2) for agent 2.

3 Planning in Joint Location Space

In principle, one can find an optimal collision-free solution for a MAPF instance by planning for all
agents simultaneously in joint location space by finding a shortest path on a graph whose vertices
correspond to tuples of cells, namely one for each agent. Figure 3 shows this graph for our example
MAPF instance. However, the number of vertices of the graph grows exponentially with the number
of agents, which makes this search algorithm too slow in practice. Therefore, one needs to develop
search algorithms that exploit the problem structure better to gain efficiency. We now discuss two
such search algorithms, namely prioritized planning and conflict-based search.

4 Prioritized Planning

Prioritized planning |1] orders the agents completely by assigning each agent a different priority.
It then plans paths for the agents, one after the other, in order of decreasing priority. It finds a



Figure 3: The joint location space for our example MAPF instance, which contains 20 vertices and
36 edges. The two letters in each circular vertex represent the cells of agents 1 and 2. The red circles
and lines represent an optimal solution, namely path [A, A, C, E| (of length 3) for agent 1 and path
[B, C, D] (of length 2) for agent 2.

path for each agent that does not collide with the environment or the (already planned) paths of all
higher-priority agents (which can be done fast). Prioritized planning is fast but suboptimal (meaning
that it does not always find an optimal collision-free solution) and even incomplete (meaning that
it does not always find a collision-free solution even if one exists). If it finds a solution, then the
solution is collision-free but the cost of the solution depends heavily on the priorities of the agents.
More information on prioritized planning can be found in [3].

Consider our example MAPF instance, and assume that agent 1 is assigned a higher priority than
agent 2. Then, prioritized planning first finds the shortest path [A, C, E| (of length 2) for agent 1
and afterward the shortest path [B, B, C, D] (of length 3) for agent 2 that does not collide with the
path of agent 1 (resulting in a collision-free solution of cost 5).
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Figure 4: The search tree of space-time A* for agent 2 for our example MAPF instance if agent 1
has higher priority than agent 2 and the path of agent 1 is [A, C, E|. The pair in each oval node
represents a cell and time step. The f-value of a node is the sum of its g-value (equal to the time
step) and its h-value (equal to the distance of its cell to the goal cell D in the environment). Node
(C,1) is pruned because agent 1 occupies cell C at time step 1 and agent 2 has to prevent a vertex
collision with agent 1. The red nodes and edges represent an optimal solution for agent 2, namely
path [B, B, C, D|.

Prioritized planning uses space-time A* |7] to plan paths for each agent. Space-time A* is a modified
A* algorithm that searches in the cell-time space, where the vertices are pairs (x,t) of cells z and
time steps t. Vertex (z,t) has a directed edge to vertex (z,¢+ 1) if and only if the agent can wait
at cell z at time step t. Vertex (z,t) has a directed edge to vertex (y,t+ 1) if and only if the agent



can move from cell z to cell y # z from time step t to time step ¢ + 1. Figure 4 shows the search
tree of space-time A* for agent 2 for our example MAPF instance.

5 Conflict-Based Search

Conflict-Based Search (CBS) [5, 6] first plans shortest paths for all agents independently (which can
be done fast). These paths do not collide with the environment but are allowed to collide with the
paths of the other agents. If this results in a collision-free solution, then it has found an optimal
collision-free solution. Otherwise, it chooses a collision between two agents (for example, agents a
and b are both in cell = at time step ¢) and considers recursively two cases, namely one with the
(negative) constraint that prohibits agent a from being in cell = at time step ¢ and one with the
(negative) constraint that prohibits agent b from being in cell x at time step ¢t. The hope is that
CBS finds a collision-free solution before it has imposed all possible constraints. CBS is slower
than prioritized planning but complete and optimal. CBS is a two-level search algorithm. We now
describe its operation in detail.

The high level of CBS searches the binary constraint tree. FEach node N of the constraint tree
contains: (1) a set of constraints imposed on the agents, where a constraint imposed on agent a
is either a (negative) vertex constraint (a,x,t), meaning that agent a is prohibited from being in
cell z at time step ¢, or an (negative) edge constraint (a,x,y,t), meaning that agent a is prohibited
from moving from cell z to cell y at time step ¢; (2) a solution that satisfies all constraints but is
not necessarily collision-free; and (3) the cost of the solution. The root node of the constraint tree
contains an empty set of constraints and a solution that consists of n shortest paths. The high level
performs a best-first search on the constraint tree, always choosing a fringe node of the constraint
tree with the smallest cost to expand next. It breaks ties in favor of a node whose paths have fewer
collisions with each other.

Once CBS has chosen node N for expansion, it checks whether the solution of node N is collision-
free. If so, then node NN is a goal node and CBS returns its solution. Otherwise, CBS chooses one
of the collisions and resolves it by splitting node N. Assume that CBS chooses to resolve a vertex
collision where agents a and b are both in cell x at time step ¢t. In any collision-free solution, at most
one of the agents can be in cell = at time step ¢. Therefore, at least one of the constraints (a, z,t)
(that prohibits agent a from being in cell z at time step ¢) or (b, z,t) (that prohibits agent b from
being in cell x at time step ¢) must be satisfied. Consequently, CBS splits node N by generating two
child nodes of node N, each with a set of constraints that adds one of these two constraints to the
constraint set of node N. Now assume that CBS chooses to resolve an edge collision where agent
a moves from cell z to cell y and agent b moves from cell y to cell x at time step . Then, the two
additional constraints are the two edge constraints (a,x,y,t) (that prohibits agent a from moving
from cell x to cell y at time step t) and (b, y, z,t) (that prohibits agent b from moving from cell y to
cell x at time step t).

For each child node, the low level of CBS finds a new shortest path for the agent with the newly
imposed constraint, which can be done fast with space-time A* (as explained earlier and also in [6]).
A vertex constraint, for example, just prunes a particular node in the search tree. This path does
not collide with the environment and has to obey all constraints imposed on the agent in the child
node but is allowed to collide with the paths of the other agents.

Consider our example MAPF instance. Figure 5 shows the corresponding constraint tree. Its root
node N contains the empty set of constraints, and the low level of CBS finds the shortest path [A,
C, E] (of length 2) for agent 1 and the shortest path [B, C, D] (of length 2) for agent 2. Thus, the
cost of node N is 2 + 2 = 4. The solution of node N has a vertex collision where agents 1 and 2 are
both in cell C at time step 1. Consequently, CBS splits node N. The new left child node N; of node
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Figure 5: Constraint tree for our example MAPF instance.

N adds the constraint (1,C,1). The low level of CBS finds the new shortest path [A, A, C, E| of
length 3 (that includes a wait action) for agent 1 in node Ny, while the shortest path of agent 2 is
identical to the one of node N since no new constraints have been imposed on agent 2. Thus, the
cost of node Nj is 3 + 2 = 5. Similarly, the new right child node Ny of node N adds the constraint
(2,C,1). The low level of CBS finds the new shortest path [B, B, C, D] of length 3 (that includes a
wait action) for agent 2 in node Ng, while the shortest path of agent 1 is identical to the one of node
N since no new constraints have been imposed on agent 1. Thus, the cost of node Ny is 2 4+ 3 = 5.
The best-first search on the high level of CBS now chooses a fringe node of the constraint tree with
the smallest cost to expand next. Assume that it breaks the tie between nodes Ny and Ny in favor
of node Nj. Since the solution of node N; is collision-free, it is a goal node and CBS returns its
collision-free solution (of cost 5) that consists of path [A, A, C, E| (of length 3) for agent 1 and path
[B, C, D] (of length 2) for agent 2.

6 Additional Information

Additional information on the MAPF problem and solution approaches can be found at http:
//mapf .info, a website that contains tutorials, publications, data sets, and additional software for
MAPEF.
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