
Student Tasks

Wolfgang Hönig∗, Jiaoyang Li, Sven Koenig — University of Southern California

Model AI Assignments 2020: A Project on Multi-Agent Path Finding (MAPF)

In this project, you will learn about Multi-Agent Path Finding (MAPF) and implement a single-
agent solver, namely space-time A*, and parts of three MAPF solvers, namely prioritized planning,
Conflict-Based Search (CBS), and CBS with disjoint splitting.

0 Task 0: Preparing for the Project

0.1 Installing Python 3

This project requires a Python 3 installation with the numpy and matplotlib packages. On Ubuntu
Linux, download python by using:

sudo apt install python3 python3-numpy python3-matplotlib

On Mac OS X, download Anaconda 2019.03 with Python 3.7 from https://www.anaconda.com/
distribution/#download-section and follow the installer. You can verify your installation by
using:

python3 --version

On Windows, download Anaconda 2019.03 with Python 3.7 from https://www.anaconda.com/
distribution/#download-section.
On Ubuntu Linux and Mac OS X, use python3 to run python. On Windows, use python instead.
You can use a plain text editor for the project. If you would like to use an IDE, we recommend that
you download PyCharm from https://www.jetbrains.com/pycharm/. The free community edition
suffices fully, but you can get the professional edition for free as well, see https://www.jetbrains.
com/student/ for details.

0.2 Installing the MAPF Software

Download the archive with the provided MAPF software and extract it on your computer.

0.3 Learning about MAPF

Read the provided textbook-style overview of MAPF.
∗Now at California Institute of Technology

1

https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/student/
https://www.jetbrains.com/student/

0.4 Understanding Independent Planning

Execute the independent MAPF solver by using:

python run_experiments.py --instance instances/exp0.txt --solver Independent

If you are successful, you should see an animation:

The independent MAPF solver plans for all agents independently. Their paths do not collide with
the environment but are allowed to collide with the paths of the other agents. Thus, there is a
collision when the blue agent 1 stays at its goal cell while the green agent 0 moves on top of it. In
your animation, both agents turn red when this happens, and a warning is printed on the terminal
notifying you about the details of the collision.
Try to understand the independent MAPF solver in independent.py. The first part defines the
class IndependentSolver and its constructor:

class IndependentSolver(object):
def __init__(self, my_map, starts, goals):

some parts are omitted here for brevity
compute heuristic values for the A* search
self.heuristics = []
for goal in self.goals:

self.heuristics.append(compute_heuristics(my_map, goal))

The function compute_heuristics receives as input the representation of the environment and the
goal cell of the agent and computes a look-up table with heuristic values (or, synonymously, h-values)
for the A* search that finds a path for the agent, by executing a Dijkstra search starting at the goal
cell.
The second part performs one A* search per agent:

def find_solution(self):
for i in range(self.num_of_agents): # Find path for each agent

path = a_star(self.my_map, self.starts[i], self.goals[i],
self.heuristics[i], i, [])↪→

if path is None:
raise BaseException('No solutions')

result.append(path)
return result

The function a_star receives as input the representation of the environment, the start cell of the
agent, the goal cell of the agent, the heuristic values computed in the constructor, the unique agent
id of the agent, and a list of constraints and performs an A* search to find a path for the agent.
The independent MAPF solver does not use constraints.

2

1 Task 1: Implementing Space-Time A*

You now change the single agent solver to perform a space-time A* search that searches in cell-time
space and returns a shortest path that satisfies a given set of constraints. Such constraints are
essential for MAPF solvers such as prioritized planning and CBS.

1.1 Searching in the Space-Time Domain

The existing A* search in the function a_star in single_agent_planner.py only searches over
cells. Since we want to support temporal constraints, we also need to search over time steps. Use
the following steps to change the search dimension:

1. Your variables root and child are dictionaries with various key/value pairs such as the g-
value, h-value, and cell. Add a new key/value pair for the time step. The time step of the root
node is zero. The time step of each node is one larger than the one of its parent node.

2. The variable closed_list contains the processed (that is, expanded) nodes. Currently, this
is a dictionary indexed by cells. Use tuples of (cell, time step) instead.

3. When generating child nodes, do not forget to add a child node where the agent waits in its
current cell instead of moving to a neighboring cell.

You can test your code by using:

python run_experiments.py --instance instances/exp1.txt --solver Independent

and should observe identical behavior.

1.2 Handling Vertex Constraints

We first consider (negative) vertex constraints, that prohibit a given agent from being in a given cell
at a given time step.
Each constraint is a Python dictionary. The following code creates a (negative) vertex constraint
that prohibits agent 2 from occupying cell (3, 4) at time step 5:

{'agent': 2,
'loc': [(3,4)],
'timestep': 5}

In order to add support for constraints, change the code to check whether the new node satisfies the
constraints passed to the a_star function and prune it if it does not.
An efficient way to check for constraint violations is to create, in a pre-processing step, a con-
straint table, which indexes the constraints by their time steps. At runtime, a lookup in the
table is used to verify whether a constraint is violated. Example function headers for the
functions build_constraint_table and is_constrained are already provided. You can call
build_constraint_table before generating the root node in the a_star function.
You can test your code by adding a constraint in prioritized.py that prohibits agent 0 from being
at its goal cell (1, 5) at time step 4 and then using:

3

python run_experiments.py --instance instances/exp1.txt --solver Prioritized

Agent 0 should wait for one time step (but when and where it waits depends on the tie-breaking).

1.3 Adding Edge Constraints

We now consider (negative) edge constraints, that prohibit a given agent from moving from a given
cell to another given cell at a given time step.
The following code creates a (negative) edge constraint that prohibits agent 2 from moving from cell
(1, 1) to cell (1, 2) from time step 4 to time step 5:

{'agent': 2,
'loc': [(1,1), (1,2)],
'timestep': 5}

Implement constraint handling for edge constraints in the function is_constrained.
You can test your code by adding a constraint in prioritized.py that prohibits agent 1 from
moving from its start cell (1, 2) to the neighboring cell (1, 3) from time step 0 to time step 1.

1.4 Handling Goal Constraints

Run your code with a constraint that prohibits agent 0 from being at its goal cell (1, 5) at time
step 10. Where is agent 0 at time step 10 in your solution? To make the algorithm work properly,
you might have to change the goal test condition. Explain what changes you made to the goal test
condition. (The solution of both agents could have collisions.)

1.5 Optional: Designing Constraints

Design a set of constraints by hand that allows your algorithm to find collision-free paths with a
minimal sum of path lengths. Run your code with the set of constraints. Document this set of
constraints, the solution, and the sum of path lengths.

2 Task 2: Implementing Prioritized Planning

The independent MAPF solver finds paths for all agents, simultaneously or one after the other, that
do not collide with the environment but are allowed to collide with the paths of the other agents.
The prioritized MAPF solver finds paths for all agents, one after the other, that do not collide
with the environment or the already planned paths of the other agents. To ensure that the path of
an agent does not collide with the already planned paths of the other agents, the function a_star
receives as input a list of (negative) constraints compiled from their paths.

2.1 Adding Vertex Constraints

Add code to prioritized.py that adds all necessary vertex constraints. You need two loops, namely
one to iterate over the path of the current agent and one to add vertex constraints for all future
agents (since constraints apply only to the specified agent). You can test your code by using:

4

python run_experiments.py --instance instances/exp2_1.txt --solver Prioritized

Now, the blue agent 2 does not stay at its goal cell when it reaches that cell for the first time:

Unfortunately, there is still a collision because both agents move to the cell of the other agent at
the same time step. We thus need to add (negative) edge constraints as well.

2.2 Adding Edge Constraints

Add code to prioritized.py that adds all necessary edge constraints, and test your code as before.
There are no more collisions.

2.3 Optional: Adding Additional Constraints

Your code does not prevent all collisions yet since agents can still move on top of other agents that
have already reached their goal locations. You can verify this issue by using the MAPF instance
exp2_2.txt and assuming that agent 0 has the highest priority. You can address this issue by adding
code that adds additional constraints that apply not only to the time step when agents reach their
goal locations but also to all future time steps.

2.4 Optional: Addressing Failures

In the MAPF instance exp2_3.txt, the priorities between agents 0 and 1 and are switched compared
to exp2_2.txt. Rerun the experiment on instance exp2_3.txt. Did your solver terminate properly
and report “no solutions”? If not, describe what happened and change your code to address the
issue. Hint: You can address this issue by limiting the time horizon of the search. The shortest path
of an agent cannot be infinitely long. So you can calculate an upper bound on the path length for an
agent based on the path lengths of all agents with higher priorities and the size of the environment.

2.5 Optional: Showing that Prioritized Planning is Incomplete and Suboptimal

Solve one or more of the following tasks either on paper or with the implementation of the prioritized
MAPF solver after you have added the additional constraints from Section 2.3:

• Design a MAPF instance for which prioritized planning does not find an (optimal or subopti-
mal) collision-free solution for a given ordering of the agents.

• Design a MAPF instance for which prioritized planning does not find an (optimal or subopti-
mal) collision-free solution, no matter which ordering of the agents it uses.

• Design a MAPF instance for which prioritized planning does not find an (optimal or subopti-
mal) collision-free solution for a given ordering of the agents even if an ordering of the agents
exists for which prioritized planning finds an optimal collision-free solution.

5

• Design a MAPF instance for which prioritized planning finds a suboptimal (but not optimal)
collision-free solution for a given ordering of the agents even if an ordering of the agents exists
for which prioritized planning finds an optimal collision-free solution.

• Design a MAPF instance for which prioritized planning does not find an optimal collision-free
solution, no matter which ordering of the agents it uses, even if a collision-free solution exists.

3 Task 3: Implementing Conflict-Based Search (CBS)

Conflict-Based Search (CBS) is slower than prioritized planning but complete and optimal.

3.1 Detecting Collisions

Write code that detects collisions (or, synonymously, conflicts) among agents, namely vertex colli-
sions where two agents are in the same cell at the same time step and edge collisions where two
agents move to the cell of the other agent at the same time step.
Add code to cbs.py that implements the two functions detect_collision and detect_collisions.
You should use get_location(path,t) to obtain the cell of an agent at time step t. You can test
your code by using:

python run_experiments.py --instance instances/exp3_1.txt --solver CBS

You receive output similar to

[{'a1': 0, 'a2': 1, 'loc': [(1, 4)], 'timestep': 3}]

3.2 Converting Collisions to Constraints

The high level of CBS searches the constraint tree. Once it has chosen a node of the constraint
tree for expansion and picked a collision of the paths of two agents in that node, it transforms
this collision into two new (negative) constraints, one for each new child node of the chosen node.
The first constraint prohibits the first agent from executing the colliding action, and the second
constraint prohibits the second agent from executing the colliding action. For the vertex collision
between agents 1 and 2 in cell (1, 4) at time step 3, the set of new vertex constraints is:

[{'agent': 0, 'loc': [(1, 4)], 'timestep': 3},
{'agent': 1, 'loc': [(1, 4)], 'timestep': 3}]

Add code to cbs.py that implements the function standard_splitting and test your code as above.
Hint: You need to reverse the direction of the edge for the second agent to obtain the second edge
constraint for an edge collision.

3.3 Implementing the High-Level Search

Algorithm 1 shows the pseudo code of the high-level search of CBS. Add code to cbs.py that finalizes
the high-level search of CBS in the function find_solution, where we have already provided the
implementation of lines 1 to 5. To manage the OPEN list, you can use the helper functions push_node
and pop_node. Add print statements that list the expanded nodes (for debugging), and test your
code as before.

6

Algorithm 1: High-level search of CBS.
Input: Representation of the environment, start cells, and goal cells
Result: optimal collision-free solution

1 R.constraints ← ∅
2 R.paths ← find independent paths for all agents using a_star()
3 R.collisions ← detect_collisions(R.paths)
4 R.cost ← get_sum_of_cost(R.paths)
5 insert R into OPEN
6 while OPEN is not empty do
7 P ← node from OPEN with the smallest cost
8 if P.collisions = ∅ then
9 return P.paths // P is a goal node

10 collision ← one collision in P.collisions
11 constraints ← standard_splitting(collision)
12 for constraint in constraints do
13 Q ← new node
14 Q.constraints ← P.constraints ∪ {constraint}
15 Q.paths ← P.paths
16 ai ← the agent in constraint
17 path ← a_star(ai, Q.constraints)
18 if path is not empty then
19 Replace the path of agent ai in Q.paths by path
20 Q.collisions ← detect_collisions(Q.paths)
21 Q.cost ← get_sum_of_cost(Q.paths)
22 Insert Q into OPEN

23 return’No solutions’

7

3.4 Testing your Implementation

You can test your implementation by running it on our test instances:

python run_experiments.py --instance "instances/test_*" --solver CBS --batch

(This may take a while depending on your computer.) The batch command creates an output file
results.csv, which you can compare to the one provided in instances/min-sum-of-cost.csv.

4 Optional Task 4: Implementing CBS with Disjoint Splitting

CBS expands many nodes for some MAPF instances as the MAPF instance exp4.txt shows, for
which CBS expands about 11 nodes (although the exact number can vary):

You can check this by using:

python run_experiments.py --instance instances/exp4.txt --solver CBS

If CBS chooses to resolve a vertex collision where agents a and b are both in cell x at time step
t, then it generates two negative vertex constraints, namely the negative vertex constraint 〈a, x, t〉
(that prohibits agent a from being in cell x at time step t) and the negative vertex constraint 〈b, x, t〉
(that prohibits agent b from being in cell x at time step t). If CBS chooses to resolve an edge collision
where agent a moves from cell x to cell y and agent b moves from cell y to cell x at time step t,
then it generates two negative edge constraints, namely the negative edge constraint 〈a, x, y, t〉 (that
prohibits agent a from moving from cell x to cell y at time step t) and the negative edge constraint
〈b, y, x, t〉 (that prohibits agent b from moving from cell y to cell x at time step t).
CBS with disjoint splitting changes the second constraint in both cases. If CBS with disjoint splitting
chooses to resolve a vertex collision, it changes the second negative vertex constraint that prohibits
agent b from being in cell x at time step t to a positive vertex constraint that requires agent a to be
in cell x at time step t. On the other hand, if CBS with disjoint splitting chooses to resolve an edge
collision, it changes the second negative edge constraint that prohibits agent b from moving from cell
y to cell x at time step t to a positive edge constraint that requires agent a to move from cell x to cell
y at time step t. In other words, CBS with disjoint splitting changes the second negative constraint
(that prohibits the second agent from executing the colliding action) to a positive constraint for the
first agent (that requires the first agent to execute the colliding action) in both cases. It could also
change the first negative constraint to a positive constraint for the second agent and thus can choose
one of the colliding agents freely, for example, randomly.

8

The reason for this change is that the second constraints are now stronger (meaning more con-
straining). For example, if an agent a is required to be in cell x at time step t, then all other
agents (including agent b) are automatically prohibited from being in cell x at time step t since
they would otherwise collide with agent a. Thus, the second positive vertex constraint of CBS with
disjoint splitting implicitly includes the second negative vertex constraint of CBS. Thus, CBS with
disjoint splitting can be expected to run faster than CBS but remains complete and optimal. More
information on CBS with disjoint splitting can be found in [1].

4.1 Supporting Positive Constraints

Add code to single_agent_planner.py to handle positive vertex and edge constraints (in addition
to the current handling of negative vertex and edge constraints). For each constraint dictionary,
you should add a new key positive with a binary value that indicates whether the constraint is
positive.

4.2 Converting Collisions to Constraints

Add code to cbs.py that implements the function disjoint_splitting. To create a positive con-
straint, set the item positive in the Python dictionary of the constraint to True. You can use
random.randint(0,1) to choose one of the two colliding agents randomly.

4.3 Adjusting the High-Level Search

Update the code in cbs.py to adjust the high-level search of CBS in the function find_solution
to the new constraints. For each child node, the low level of CBS without disjoint splitting finds a
new shortest path for the agent with the newly imposed negative constraint. The paths of the other
agents do not need to be updated because they still satisfy the constraints of those agents. However,
the low level of CBS with disjoint splitting might have to find new shortest paths not only for the
agent with a newly imposed positive constraint but for other agents as well since a positive constraint
for an agent implies negative constraints for all other agents. You can compute a list of agent ids of
agents that violate a given positive constraint with the helper function paths_violate_constraint.
CBS with disjoint splitting should not add a child node if no path exists for one or more of these
agents. Not adding such child nodes is more important for CBS with disjoint splitting than for
CBS because there are many more such nodes for CBS with disjoint splitting due to its stronger
constraints.
Test your code as before. CBS with disjoint splitting should expand about 8 instead of 11 nodes
(although the exact number can vary).

5 Optional Task 5: Benchmarking MAPF Solvers

Benchmark your three MAPF solvers on more exciting MAPF instances and compare their perfor-
mance. You can find benchmark instances at http://mapf.info/index.php/Main/Benchmarks.

References

[1] J. Li, D. Harabor, P. Stuckey, A. Felner, H. Ma, and S. Koenig. Disjoint splitting for multi-
agent path finding with conflict-based search. In Proceedings of the International Conference on
Automated Planning and Scheduling, pages 279–283, 2019.

9

http://mapf.info/index.php/Main/Benchmarks

	Task 0: Preparing for the Project
	Installing Python 3
	Installing the MAPF Software
	Learning about MAPF
	Understanding Independent Planning

	Task 1: Implementing Space-Time A*
	Searching in the Space-Time Domain
	Handling Vertex Constraints
	Adding Edge Constraints
	Handling Goal Constraints
	Optional: Designing Constraints

	Task 2: Implementing Prioritized Planning
	Adding Vertex Constraints
	Adding Edge Constraints
	Optional: Adding Additional Constraints
	Optional: Addressing Failures
	Optional: Showing that Prioritized Planning is Incomplete and Suboptimal

	Task 3: Implementing Conflict-Based Search (CBS)
	Detecting Collisions
	Converting Collisions to Constraints
	Implementing the High-Level Search
	Testing your Implementation

	Optional Task 4: Implementing CBS with Disjoint Splitting
	Supporting Positive Constraints
	Converting Collisions to Constraints
	Adjusting the High-Level Search

	Optional Task 5: Benchmarking MAPF Solvers

