
Planning paths for RISK:

Uniform Cost Search

This assignment involves planning paths in the game of RISK. A path in
this context is a sequence of territories that an attacking player could conquer
in order to occupy a target territory. Such a path will start at a territory that
is owned by the attacking player and then proceeds through a sequence of terri-
tories owned by opposing players that ends at the target territory. A minimum
cost path will correspond in some manner to the difficulty of conquering the
entire sequence of territories. In this assignment you will get to define your own
cost function for these paths. You should first download the RISK-AI.zip file
and unzip in on your computer. The provided code has been tested with Python
2.7.

The folder you are provided contains (in addition to files for the final RISK
AI assignment, which are described in that handout):

• RISK Search Handout.pdf - This file that you are reading

• risk search.py - This is the file that you will modify to implement the
search function. It is provided a logfile and a state index, as well as source
and destination territories. It will then run the search and print out the
resulting path. It can be run by typing:

python risk search.py logfile state index source territory

destination territory

from the command line. The source territory must belong to the player
whose turn it is to act in the give state, while the destination territory
must belong to an opponent.

Part 1 [60 points]

The first part of this assignment is to complete the code so uniform cost search
can plan a path from between the given territories. Starter code has been
provided with the assignment

• Task 1 [15 points] Implement the get successors() function. You
can find where to do this by searching for “Task 1.1” in the code. This
function takes in a territory id number and the current state and needs
to return a list of all of the neighboring territory id numbers that are not
owned by the current player in the given state. Helpful tips for this:

1

– A list of the territories that border territory number t are stored in
state.board.territories[t].neighbors

– The player id of the player that owns territory t in a state is given
by state.owners[t]

– The current player in a state is given by state.current player

• Task 2 [45 points] Implement the main loop of the uniform cost search
function. You can find this by searching for “Task 1.2” in the code. In
this loop you need to:

– Extract the lowest cost node from the fringe (use fringe.get())

– Check to see if this node’s state is the goal of the search. To do
this compare the cur node.id to the goal. These are integers that
indicate a territory number. If it is the goal, return the node.

– Add this node’s id to the list of expanded states.

– Then get all of the successors of this node’s state (use the get successors(

) function that you implemented in Task 1.)

– For each successor, make sure it already hasn’t been expanded, and
then create a new SearchNode object which has this successor as its
id. Pass 1 in as the step cost.

– Add this new node to the fringe. To do this use fringe.put(node

).

Part 2 [20 points]

In this part of the assignment you will evaluate your code and make sure it is
working. To do this we first need some game states that we can plan paths in

To do this we will do the following:

• Use the play risk ai.py to play a match between two different agents.
We suggest trying matches between different combinations of random ai,
donothing ai, and attacker ai, which are provided in the ai folder. This
script will automatically perform a match of specified length between the
specified AI’s and optionally save the game log file. To run the script you
should type:

python play risk ai.py -w ai\random ai.py A ai\random ai.py B

This will play a 5 game match between to random ai agents, named A and
B. The logfiles will be written out (-w option) to the matches folder. To
run a match between different agents you can simply change the random ai
script path to point to another agent.

• Then watch the logs using risk game viewer.py - This is the script that
allows you to view games played using the play risk ai.py script. It just
needs to be passed in the full path to the logfile. Run it by typing:

python risk game viewer.py LOG FILE

2

from the command line.

• When you see a state that has potential paths that could be planned,
pause the viewer, then take a screenshot. Notice the state number in the
display, you will need to pass this into the search program. Then get the
names of the two territories (make sure you notice who the current player
in the state is).

• Then run your search code and see if it produces the lowest cost path.
The provided code initially simply counts the number of territories that
must be passed through to get the cost.

• Include in your write-up several examples, with screenshots of the state
and paths found, to demonstrate that your code is working.

Part 3 [20 points]

In this section you will modify the cost function that is used in the search. You
will do this by modifying the code you wrote in Task 2 above. We would like
the cost of the path to reflect in some manner the difficulty of conquering that
path. Come up with a method of measuring this cost, explain how you chose
it in your write-up, and modify the code to calculate and us it (instead of the
step cost of 1).

Find at least two states where the planned path is different using the two
cost methods and show what paths were planned and discuss which you think
might be better for a RISK agent.

You are required to hand in the following for this assignment:

1. Your code with the required parts implemented or changed.

2. Required screenshots and discussion showing that the code is working
correctly for the different parts of the assignment.

3. At least one substantial paragraph describing what you learned from these
experiments, and how you could use this in a RISK AI.

1 Extra credit [20 points]

Modify the code to find the best possible starting territory for reaching the
destination (in terms of minimum cost). Turn in your code and a description of
how you did this.

3

