MS& E 336 Lecture 14: Approachability and regret minimization
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In this lecture we use Blackwell’s approachability theorenfiadrmulate both external and in-
ternal regret minimizing algorithms. Our study is basednariily on the algorithms presented by
Hart and Mas-Colell [6, 7]; see also [3] for a summary.

Throughout the lecture we consider a finite two-player ganiesre each playerhas a finite
pure action setl;; letA =[], A;,and letd_; = H#i A;. We leta; denote a pure action for player
i, and lets; € A(A;) denote a mixed action for playéer We will typically view s; as a vector in
R4, with s;(a;) equal to the probability that playeplaces onu;. We letIl;(a) denote the payoff
to playeri when the composite pure action vectorisand by an abuse of notation alsoI&{s)
denote the expected payoff to playevhen the composite mixed action vectosis

The game is played repeatedly by the players. WaTet= (a, ..., a” ') denote the history
up to time7'. Theexternal regret of player: against action; after historyh?” is:
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ERi(h":s) =) TIli(s;,a’ ;) —1(at,a’ ).
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Theinternal regret of playeri of actiona; against actiom/, after historyh® is:

IR aza z ZI{CL - al (CLZ, a’fi) - Hi(ai7 a’iz)) :

We letp! € A(A;) denote the marginal empirical distribution of playsrplay up to timeT":
1 T-1
o) = = ) T{ai = ai}.
t=0

1 External Regret Minimization

Recall that a strategy for player 1 is external regret minimgizor Hannan consistent, if regardless
of the (possibly history-dependent) strategy of playeh&ré holds:

_ 1
hjrg:s;p gleajcl TERl(hT; ap) <O0.

To translate from external regret minimization to the Blaekvapproachability setting, we
define a game with vector-valued payoffs where the payofforeo player 1 is negative regret.
Formally, defindl : A; x Ay, — R4 by:

A

H(al, CLQ)((I,I) = H1<a1, CLQ) — Hl(a'l, ag).



ThusII measures the improvement in player 1's payoff by playingnstead ofa}. The key
observation we require is the following:

T-1
ER(h";a1) = = T(a}, db)(ay).
t=0
Thus, in the notation of Lecture 13, we have:
. 1
HT(CL1> = —fER1<hT, al).

Hannan consistency is equivalent to requiring that fonak A, there holds:

lim inf 117 (ay) > 0.
We thus concludethere exist Hannan consistent algorithms for player 1 if and only if the nonneg-
ative orthant S = {w : u(ay) > 0,a; € A;} isapproachable for player 1 in the zero-sum game
with vector-valued payoffs IT.

In one direction, we have already established the existeiidannan consistent algorithms for
player 1 (e.g., the multiplicative weights algorithm), e honnegative orthant must be approach-
able. Further, Blackwell's approachability theorem thesugas that any halfspace containing the
orthant is also approachable.

More interesting, however, is the use of approachabilityaiestruct a Hannan consistent algo-
rithm for player 1. Our approach will be to build the strategyggested in the proof of Blackwell's
theorem (see Lecture 13), by “mixing” optimal strategieatthrise from approachability of all
the halfspaces containing We start by first finding an optimal strategy for the scalanzm
game induced by any halfspace containtgWithout loss of generality, we restrict attention to
halfspaces of the form:

H={u:V - -u>0},

where the vectoiV is nonzero, and has all nonnegative components. Such paeddas the
property that its tangent hyperplane is also tangent.to(Clearly approachability of all such
halfspaces implies approachability of any halfspace ¢omg.S.)
To ensure approachability éf, we must find a mixed actiosy for player 1 such that:
. . - >
ar2n€1£12 V -1I(s1,az) > 0. Q)

(Recall that this is th8lackwell condition.) From the definition of1, the preceding relation holds
if and only if, for eachuy € As:

IT, (1, as) (Z V(a1)> > ) V(a)(as, az).

a1€A, a1€A1

If we choose: Via)
a1
si(a) = =——5—, (2)
o) = V@)

2



then (1) holds with equality for all, € A,. (Note the denominator is positive sinke+ 0.)

We now use this construction to build the strategy suggestéige proof of Blackwell’s ap-
proachability theorem. The idea is to projdf[:?1 onto the nonnegative orthant, and then play the

optimal actions; for the resulting halfspace. Note tha;(f[T_l)(al) = [I7(ay)]*, so:

T-1 ~T—1

Pyl () — T (al):[%ERl(hT;al)Tr'

Thus Blackwell’s strategy is as follows. At tinfe player 1 plays any mixed action. At tim¥g if

e S—l e if ER,(h;ay) < 0 for all a;—then player 1 can play according to any mixed

action. IfTT" Q S, then player 1 plays the following mixed actief:

[ERl(hT7 a1>] -
Yajea [ER1(AT5ah)]"

The preceding expression follows from (2). From the proothaf approachability theorem, we
conclude that this strategy for player 1 ensures the averagier payoff approaches the nonnega-
tive orthant; in other words, this is a Hannan consistertritlym for player 1.

We make two remarks on this algorithm:

S’{<a/1) = a) € Al-

1. Notice that the mixed actior] depends on more than just the empirical distribution of tay
2’s action—it also depends on the past historyplalyer 1's play. Thus the algorithm just
constructed isiot a variant of fictitious play.

2. It is possible to provide a finite time bound on the regrethaf algorithm, in the spirit of
the bounds proven in Lecture 11 for the multiplicative wésgddgorithm. In particular, it is
possible to show that if player 1 uses this algorithm, then:

E[max ER;(h";a1)] < O(/T|Ay)).

a1€A1

(See [3] for details.)

2 Internal Regret Minimization

We now consider the same approach as the previous sectiofoy boternal regret minimization.
Recall that a strategy for player liigernal regret minimizing if regardless of the (possibly history-
dependent) strategy of player 2, there holds foralt) € A,

1
lim sup ?IRl(hT; ar,ay) <O0.

T—o00

By analogy with the preceding section, we consider a veabred payoffil : A; x A, —
RA1xA1 defined as:

(ar, az)(ay, df) = T{a1 = a} }(I(a1, az) — (a}, az)).
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It then follows that: )
HT<CL1, CL/1> = —fIRl(hT, as, a’l)

Thus internal regret minimization is equivalent to the egment that for alk,,a| € A,, there
holds: R
lim inf 11" (a1, a}) > 0.

T—o00

We conclude thathere exist internal regret minimizing algorithms for player 1 if and only if the
nonnegative orthant S = {u : u(ay,a}) > 0,a;,a] € A,} isapproachable for player 1 in the
zero-sum game with vector-valued payoffs I1.

As in the preceding section, we use the strategy constructind approachability theorem to
present an internal regret minimizing algorithm for plagenVe start by considering approacha-
bility of halfspaces of the form:

H={u:V - -u>0},

whereV is nonzero, and all componentsWfare nonnegative. We wish to find a mixed actign
for player 1 such that:
min V - II(s1, as) > 0.

az€A2

Fix ay € As. Then the preceding expression is equivalent to:

> Vial,d)) Y si(a)T{ay = ai}((a1, az) — T(af, az)) > 0.

ay,af €Ay a1€A;

Simplifying, the preceding expression is equivalent tordguirement that:

Z V (a1, ay)si(ar)(ay, az) Z V(a', a1)s1(a))(ay, az) > 0.

al,aﬁeAl al a1€A1

The preceding expression will hold with equality for @l € A, as long as for alk; € A, there
holds:
> Viar,dy)si(ar) = V(ai, ar)sa(ah) = 0. (3)

a/1€A1

Thus approachability off has been reduced to determining whether there exists a rviradgy
s1 such that (3) holds. Define thé, x A; matrixQ as:

Q(ay,a)) = V(ay,ay), if a1 #aj; Qar,ar) Z V(ay,al). 4)

al;éa1

Thenq is the rate matrix of a continuous time Markov chain on thedistate spacd;, and such a
chain must have at least one invariant distribution, i.disaibutions; such that;Q = 0; such an
invariant distribution is also a mixed action satisfying. (Bhis establishes tha&f is approachable.
As in the preceding section, we can use this constructioetiay with the strategy of the proof
of the approachability theorem to give an internal regretimizing strategy for player 1. At time



T, we project the average paydifT ' onto the nonnegative orthasit and use the optimal strategy
suggested by the resulting halfspace. We have:

~ T—1 ~ T—1

1 +
Peltt" ) - 1 o) = | IR s )]

Thus wherT ' ¢ S, player 1 plays a mixed actiost that is an invariant distribution for the
continuous time Markov chain with rate matdxdefined as in (4), with:

1 +
V(ay,ay) = [TIRl(hT;al,a’I)} )

The approachability theorem then implies that if player dyplusing this algorithm, the average
payoff approaches the nonnegative orthant; in other wahis algorithm is internal regret mini-
mizing. (A similar eigenvector calculation is used by Blunddhansour to show that any external
regret minimizing algorithm can be efficiently “convertedto an internal regret minimizing al-
gorithm; see [1].)

We conclude by reinterpreting the algorithm via a slightiffedent presentation. Choose a
constaniu > sup,, o |Q(a1,a})|, and define:

P=1+Q/u

wherel is the identity matrix. TherP is a stochastic matrix, i.e., all its entries are honnegativ
and all its rows sum to one; the former follows by choice:pfind the latter since all rows 6}
sum to zero. ThudP is the transition matrix of a discrete time Markov chain oa fimite state
spaceA;, and further, a mixed actiosy is an invariant distribution; for this chain if and only if
it is an invariant distribution for the continuous time Mavkchain with rate matrixQ.

If we write the components dP explicitly in terms of the internal regrets, we find:

11 T
P(ay,a}) = p {T]Rl(hT;al,a’I)} , if a) # aq;
P(abal) =1- Z P(al,a’l).
aj#al

Hart and Mas-Colell view the preceding transition prob&bksi as a specification for repeated
play [6]. In particular, they consider an algorithm for pdayl wheres”(a}) = P(al ™, d}).
Considering the expression above fB(a;,a}), we see that this algorithm involves increasing
weight on pure actions for which internal regret is higgminst the most recently played pure
action. Hart and Mas-Colell refer to this algorithm as “regret maigti (Note that this isot the
algorithm constructed via Blackwell approachability abovbere player 1 plays according to the
stationary distribution of the matri®.) Hart and Mas-Colell observe that while regret matching
is not internal regret minimizing, if all players play acdorg to the regret matching strategy,
then the resulting joint distribution of play converges be set of correlated equilibria. This is
an elegant result in the theory of learning in games, becaiugee simplicity of regret matching.
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Indeed, regret matching might be considered the simplabkeadigorithms for which convergence
to correlated equilibria is guaranteed. Note, howevet,itliaquires the strong assumption that all
players are using the same algorithm.

Additional remarks:

1. As before, observe that the internal regret minimizirggpethm constructed above also has
the property that it depends on the entire past history di ptayers’ actions (through the
regret vector).

2. Itis possible to find finite time bounds for internal regrenimizing algorithms as well. The
best of these bounds at& higher than the corresponding bounds for their externakteg
minimizing counterparts; thus, for example, the best athke bound on internal regret (in
the general setting) at timE is /7 log | A;|. (Informally, this inflation occurs because the
set of “experts” we are checking against is of sjZg|?, rather than siz¢A,|; see [3] for
details.)

3. Clearly, internal regret minimization requires a morelssicated algorithmic procedure
than external regret minimization; in particular, compgta stationary distribution typically
requires an eigenvector calculation.

3 Potential-Based Approachability

We conclude by briefly surveying a generalization of appheddity that turns out to be quite
powerful; the approach we present here is studied in moaldst Hart and Mas-Colell [7] and
Cesa-Bianchi and Lugosi [2].

For definiteness, we fix attention on the external regretmmization setting, though the same
constructions can also be applied for internal regret mization. We defindI as in Section 1,

and again leS be the nonnegative orthant. Suppose there exists a resde/dnctiond (IT) with
the following properties:

1. There exists amonotonically increasing, concave fongtisuch thatb (IT) = D e o(I(ay)).

2. ForIl ¢ S, there exists a mixed action such that:

~ ~

V(I)(H) . H(Sl, &2) >0, for all ay € AQ. (5)

The idea in these assumptions is tfiameasures the quality of the payoff vecldr The first
condition ensures that resembles a sum of “utility functions” in each elemenihf The second
condition is a generalization of the Blackwell conditionrdjuires that ifI ¢ S, then there exists
a mixed action of player 1 that guarantees that the resybtaygff to player 1 lies on the same side
of the subspace defined by the nonﬁat(f[) as the nonnegative orthant. It is straightforward to
show that under conditions on the Hessianbpfone can recreate a strategy similar to the proof
of Blackwell’s approachability theorem to ensure that therage payoff converges to the set
almost surely [7, 2].



One example of a potential is provided by:

o) = { 0—’lx2 if 2 <0;

2 )
otherwise
It is straightforward to check that using this potential, eizain:

- T—1 1 T *
VCI)(H )(CL1) = TERl(h ;(11) .
Thus the generalized Blackwell condition (5) is equivalerttie standard Blackwell condition (1),
with V(a;) = [(1/T)ERy(hT; ay)] .
Another example is provided by consideringr) = —e~/¢, for somes > 0. In this case:

VO () = ZelDERT

Following the analysis of Section 1, we see that a mixed actiosatisfying (5) is given by:

e/ TIER (W) fe oMh(arpt =) /e

T
sy (a1) = - Ty g"
1/T)ER:(hTsa1)/e rpl 1
Za,leAl e(1/T)ER1(hT;a1)/ Za’leAl eli(aq,py 1) /e

The last equality follows by multiplying top and bottom byp((1/7) 3", 11 (at, ab)).

Thus using the exponential potential, we recover the lagiidtitious play of Fudenberg and
Levine [5], or equivalently, the multiplicative weightsgakithm of Freund and Schapire [4]. We
conclude that the multiplicative weights algorithm can éeavered as a special case of algorithms
arising via Blackwell approachability. Note, however, thaneral stochastic fictitious play algo-
rithms will not emerge as special cases of algorithms coowd via the Blackwell condition; to
see this, note that stochastic fictitious play algorithmyg ewvolve responses to the empirical dis-
tribution of the opponent, while algorithms constructed &pproachability generally involve the
entire past history of both players’ actions (as discusbede).
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