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Nash equilibrium
In game theory, the Nash equilibrium, named after American mathematician John
Forbes Nash Jr., is a solution concept of a non-cooperative game involving two or
more players in which each player is assumed to know the equilibrium strategies of
the other players, and no player has anything to gain by changing only their own
strategy.[1] If each player has chosen a strategy and no player can benefit by
changing strategies while the other players keep theirs unchanged, then the current
set of strategy choices and the corresponding payoffs constitutes a Nash equilibrium.
The Nash equilibrium is one of the foundational concepts in game theory. The reality
of the Nash equilibrium of a game can be tested using experimental economics
methods.

Stated simply, Alice and Bob are in Nash equilibrium if Alice is making the best
decision she can, taking into account Bob's decision while Bob's decision remains
unchanged, and Bob is making the best decision he can, taking into account Alice's
decision while Alice's decision remains unchanged. Likewise, a group of players are
in Nash equilibrium if each one is making the best decision possible, taking into
account the decisions of the others in the game as long as the other parties' decisions
remain unchanged.
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Game theorists use the Nash equilibrium concept to analyze the outcome of the strategic interaction of several decision makers. In
other words, it provides a way of predicting what will happen if several people or several institutions are making decisions at the
same time, and if the outcome depends on the decisions of the others. The simple insight underlying John Nash's idea is that one
cannot predict the result of the choices of multiple decision makers if one analyzes those decisions in isolation. Instead, one must ask
what each player would do, taking into account the decision-making of the others.

Nash equilibrium has been used to analyze hostile situations like war and arms races[2] (see prisoner's dilemma), and also how
conflict may be mitigated by repeated interaction (see tit-for-tat). It has also been used to study to what extent people with different
preferences can cooperate (see battle of the sexes), and whether they will take risks to achieve a cooperative outcome (see stag hunt).
It has been used to study the adoption of technical standards, and also the occurrence of bank runs and currency crises (see
coordination game). Other applications include traffic flow (see Wardrop's principle), how to organize auctions (see auction theory),
the outcome of efforts exerted by multiple parties in the education process,[3] regulatory legislation such as environmental regulations
(see tragedy of the Commons),[4] natural resource management,[5] analysing strategies in marketing,[6] and even penalty kicks in
football (see matching pennies).[7]

The Nash equilibrium was named after American mathematician John Forbes Nash, Jr. A version of the Nash equilibrium concept
was first known to be used in 1838 by Antoine Augustin Cournot in his theory of oligopoly.[8] In Cournot's theory, firms choose how
much output to produce to maximize their own profit. However, the best output for one firm depends on the outputs of others. A
Cournot equilibrium occurs when each firm's output maximizes its profits given the output of the other firms, which is a pure-strategy
Nash equilibrium. Cournot also introduced the concept of best response dynamics in his analysis of the stability of equilibrium.
However, Nash's definition of equilibrium is broader than Cournot's. It is also broader than the definition of a Pareto-efficient
equilibrium, since the Nash definition makes no judgements about the optimality of the equilibrium being generated.

The modern game-theoretic concept of Nash equilibrium is instead defined in terms of mixed strategies, where players choose a
probability distribution over possible actions. The concept of the mixed-strategy Nash equilibrium was introduced by John von
Neumann and Oskar Morgenstern in their 1944 book The Theory of Games and Economic Behavior. However, their analysis was
restricted to the special case of zero-sum games. They showed that a mixed-strategy Nash equilibrium will exist for any zero-sum
game with a finite set of actions.[9] The contribution of Nash in his 1951 article "Non-Cooperative Games" was to define a mixed-
strategy Nash equilibrium for any game with a finite set of actions and prove that at least one (mixed-strategy) Nash equilibrium must
exist in such a game. The key to Nash's ability to prove existence far more generally than von Neumann lay in his definition of
equilibrium. According to Nash, "an equilibrium point is an n-tuple such that each player's mixed strategy maximizes his payoff if the
strategies of the others are held fixed. Thus each player's strategy is optimal against those of the others." Just putting the problem in
this framework allowed Nash to employ the Kakutani fixed-point theorem in his 1950 paper, and a variant upon it in his 1951 paper
used the Brouwer fixed-point theorem to prove that there had to exist at least one mixed strategy profile that mapped back into itself
for finite-player (not necessarily zero-sum) games, namely, a strategy profile that did not call for a shift in strategies that could
improve payoffs.[10]

Since the development of the Nash equilibrium concept, game theorists have discovered that it makes misleading predictions (or fails
to make a unique prediction) in certain circumstances. They have proposed many related solution concepts (also called 'refinements'
of Nash equilibria) designed to overcome perceived flaws in the Nash concept. One particularly important issue is that some Nash
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equilibria may be based on threats that are not 'credible'. In 1965 Reinhard Selten proposed subgame perfect equilibrium as a
refinement that eliminates equilibria which depend on non-credible threats. Other extensions of the Nash equilibrium concept have
addressed what happens if a game is repeated, or what happens if a game is played in the absence of complete information. However,

subsequent refinements and extensions of the Nash equilibrium concept share the main insight on which Nash's concept rests: all
equilibrium concepts analyze what choices will be made when each player takes into account the decision-making of others.

Informally, a strategy profile is a Nash equilibrium if no player can do better by unilaterally changing his or her strategy. To see what
this means, imagine that each player is told the strategies of the others. Suppose then that each player asks themselves: "Knowing the
strategies of the other players, and treating the strategies of the other players as set in stone, can I benefit by changing my strategy?"

If any player could answer "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch (or is
indifferent between switching and not) then the strategy profile is a Nash equilibrium. Thus, each strategy in a Nash equilibrium is a
best response to all other strategies in that equilibrium.[11]

The Nash equilibrium may sometimes appear non-rational in a third-person perspective. This is because a Nash equilibrium is not
necessarily Pareto optimal.

The Nash equilibrium may also have non-rational consequences in sequential games because players may "threaten" each other with
non-rational moves. For such games the subgame perfect Nash equilibrium may be more meaningful as a tool of analysis.

Let  be a game with  players, where  is the strategy set for player ,  is the set of strategy
profiles and  is its payoff function evaluated at . Let  be a strategy profile of player  and 
be a strategy profile of all players except for player . When each player  chooses strategy  resulting in strategy
profile  then player  obtains payoff . Note that the payoff depends on the strategy profile chosen, i.e., on the
strategy chosen by player  as well as the strategies chosen by all the other players. A strategy profile  is a Nash equilibrium
(NE) if no unilateral deviation in strategy by any single player is profitable for that player, that is

When the inequality above holds strictly (with > instead of ≥) for all players and all feasible alternative strategies, then the
equilibrium is classified as a strict Nash equilibrium. If instead, for some player, there is exact equality between  and some other
strategy in the set , then the equilibrium is classified as a weak Nash equilibrium.

A game can have a pure-strategy or a mixed-strategy Nash equilibrium. (In the latter a pure strategy is chosen stochastically with a
fixed probability).

Nash proves that if we allow mixed strategies, then every game with a finite number of players in which each player can choose from
finitely many pure strategies has at least one Nash equilibrium.

Nash equilibrium need not exist if the set of choices is infinite and noncompact. An example is when two players simultaneously
name a natural number with the player naming the larger number wins. However, Nash equilibrium exists if the set of choices is
compact with continuous payoff.[12] An example (with the equilibrium being a mixture of continuously many pure strategies) is if
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A sample coordination game showing relative payoff for player 1 (row) /
player 2 (column) with each combination

Player 2
Player 1

Player 2 adopts
strategy A

Player 2 adopts
strategy B

Player 1 adopts
strategy A 4 / 4 1 / 3

Player 1 adopts
strategy B 3 / 1 2 / 2

The driving game

Driver 2
Driver 1 Drive on the Left Drive on the Right

Drive on the Left 10, 10 0, 0

Drive on the Right 0, 0 10, 10

two players simultaneously pick a real number between 0 and 1 (inclusive) with player one winnings (paid by the second player)
equaling square root of the distance between the two numbers.

The coordination game is a classic
(symmetric) two player, two strategy game,
with an example payoff matrix shown to the
right. The players should thus coordinate,
both adopting strategy A, to receive the
highest payoff; i.e., 4. If both players chose
strategy B though, there is still a Nash
equilibrium. Although each player is awarded
less than optimal payoff, neither player has
incentive to change strategy due to a
reduction in the immediate payoff (from 2 to 1).

A famous example of this type of game was called the stag hunt; in the game two players may choose to hunt a stag or a rabbit, the
former providing more meat (4 utility units) than the latter (1 utility unit). The caveat is that the stag must be cooperatively hunted, so
if one player attempts to hunt the stag, while the other hunts the rabbit, he will fail in hunting (0 utility units), whereas if they both
hunt it they will split the payload (2, 2). The game hence exhibits two equilibria at (stag, stag) and (rabbit, rabbit) and hence the
players' optimal strategy depend on their expectation on what the other player may do. If one hunter trusts that the other will hunt the
stag, they should hunt the stag; however if they suspect that the other will hunt the rabbit, they should hunt the rabbit. This game was
used as an analogy for social cooperation, since much of the benefit that people gain in society depends upon people cooperating and
implicitly trusting one another to act in a manner corresponding with cooperation.

Another example of a coordination game is the setting where two technologies are available to two firms with comparable products,
and they have to elect a strategy to become the market standard. If both firms agree on the chosen technology, high sales are expected
for both firms. If the firms do not agree on the standard technology, few sales result. Both strategies are Nash equilibria of the game.

Driving on a road against an oncoming car, and having to choose either to swerve on the left or to swerve on the right of the road, is
also a coordination game. For example, with payoffs 10 meaning no crash and 0 meaning a crash, the coordination game can be
defined with the following payoff matrix:

In this case there are two pure-strategy
Nash equilibria, when both choose to either
drive on the left or on the right. If we admit
mixed strategies (where a pure strategy is
chosen at random, subject to some fixed
probability), then there are three Nash
equilibria for the same case: two we have
seen from the pure-strategy form, where the

probabilities are (0%,100%) for player one, (0%, 100%) for player two; and (100%, 0%) for player one, (100%, 0%) for player two
respectively. We add another where the probabilities for each player are (50%, 50%).

Examples

Coordination game

Prisoner's dilemma
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Example PD payoff matrix

Prisoner 2
Prisoner 1 Cooperate (with other) Defect (betray other)

Cooperate (with other) 1, 1 3, 0

Defect (betray other) 0, 3 2, 2

Imagine two prisoners
held in separate cells,
interrogated
simultaneously, and
offered deals (lighter jail
sentences) for betraying
their fellow criminal. They
can "cooperate" (with the
other prisoner) by not snitching, or "defect" by betraying the other. However, there is a catch; if both players defect, then they both
serve a longer sentence than if neither said anything. Lower jail sentences are interpreted as higher payoffs (shown in the table).

The prisoner's dilemma has a similar matrix as depicted for the coordination game, but the maximum reward for each player (in this
case, a minimum loss of 0) is obtained only when the players' decisions are different. Each player improves their own situation by
switching from "cooperating" to "defecting", given knowledge that the other player's best decision is to "defect". The prisoner's
dilemma thus has a single Nash equilibrium: both players choosing to defect.

What has long made this an interesting case to study is the fact that this scenario is globally inferior to "both cooperating". That is,
both players would be better off if they both chose to "cooperate" instead of both choosing to defect. However, each player could
improve their own situation by breaking the mutual cooperation, no matter how the other player possibly (or certainly) changes their
decision.

An application of Nash equilibria is in determining the expected flow of traffic
in a network. Consider the graph on the right. If we assume that there are x
"cars" traveling from A to D, what is the expected distribution of traffic in the
network?

This situation can be modeled as a "game" where every traveler has a choice of
3 strategies, where each strategy is a route from A to D (either ABD,
ABCD, or ACD). The "payoff" of each strategy is the travel time of each
route. In the graph on the right, a car travelling via ABD experiences travel
time of (1+x/100)+2, where x is the number of cars traveling on edge AB.
Thus, payoffs for any given strategy depend on the choices of the other
players, as is usual. However, the goal, in this case, is to minimize travel time,
not maximize it. Equilibrium will occur when the time on all paths is exactly
the same. When that happens, no single driver has any incentive to switch
routes, since it can only add to their travel time. For the graph on the right, if,
for example, 100 cars are travelling from A to D, then equilibrium will occur when 25 drivers travel via ABD, 50 via ABCD, and
25 via ACD. Every driver now has a total travel time of 3.75 (to see this, note that a total of 75 cars take the AB edge, and likewise,
75 cars take the CD edge).

Notice that this distribution is not, actually, socially optimal. If the 100 cars agreed that 50 travel via ABD and the other 50 through
ACD, then travel time for any single car would actually be 3.5, which is less than 3.75. This is also the Nash equilibrium if the path
between B and C is removed, which means that adding another possible route can decrease the efficiency of the system, a
phenomenon known as Braess's paradox.

Network traffic

Sample network graph. Values on edges
are the travel time experienced by a 'car'
traveling down that edge. x is the number
of cars traveling via that edge.

Competition game
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A competition game

Player 2
Player 1 Choose '0' Choose '1' Choose '2' Choose '3'

Choose '0' 0, 0 2, −2 2, −2 2, −2

Choose '1' −2, 2 1, 1 3, −1 3, −1

Choose '2' −2, 2 −1, 3 2, 2 4, 0

Choose '3' −2, 2 −1, 3 0, 4 3, 3

A payoff matrix – Nash equilibria in bold

Player 2
Player 1 Option A Option B Option C

Option A 0, 0 25, 40 5, 10

Option B 40, 25 0, 0 5, 15

Option C 10, 5 15, 5 10, 10

This can be illustrated by a two-
player game in which both players
simultaneously choose an integer
from 0 to 3 and they both win the
smaller of the two numbers in
points. In addition, if one player
chooses a larger number than the
other, then they have to give up
two points to the other.

This game has a unique pure-
strategy Nash equilibrium: both players choosing 0 (highlighted in light red). Any other strategy can be improved by a player
switching their number to one less than that of the other player. In the adjacent table, if the game begins at the green square, it is in
player 1's interest to move to the purple square and it is in player 2's interest to move to the blue square. Although it would not fit the
definition of a competition game, if the game is modified so that the two players win the named amount if they both choose the same
number, and otherwise win nothing, then there are 4 Nash equilibria: (0,0), (1,1), (2,2), and (3,3).

There is an easy numerical way to identify Nash equilibria on a payoff matrix. It is especially helpful in two-person games where
players have more than two strategies. In this case formal analysis may become too long. This rule does not apply to the case where
mixed (stochastic) strategies are of interest. The rule goes as follows: if the first payoff number, in the payoff pair of the cell, is
the maximum of the column of the cell and if the second number is the maximum of the row of the cell - then the cell
represents a Nash equilibrium.

We can apply this rule to a 3×3 matrix:

Using the rule, we can very quickly (much faster than with
formal analysis) see that the Nash equilibria cells are
(B,A), (A,B), and (C,C). Indeed, for cell (B,A) 40 is the
maximum of the first column and 25 is the maximum of
the second row. For (A,B) 25 is the maximum of the
second column and 40 is the maximum of the first row.
Same for cell (C,C). For other cells, either one or both of
the duplet members are not the maximum of the

corresponding rows and columns.

This said, the actual mechanics of finding equilibrium cells is obvious: find the maximum of a column and check if the second
member of the pair is the maximum of the row. If these conditions are met, the cell represents a Nash equilibrium. Check all columns
this way to find all NE cells. An N×N matrix may have between 0 and N×N pure-strategy Nash equilibria.

The concept of stability, useful in the analysis of many kinds of equilibria, can also be applied to Nash equilibria.

A Nash equilibrium for a mixed-strategy game is stable if a small change (specifically, an infinitesimal change) in probabilities for
one player leads to a situation where two conditions hold:

1. the player who did not change has no better strategy in the new circumstance
2. the player who did change is now playing with a strictly worse strategy.

Nash equilibria in a payoff matrix

Stability
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If these cases are both met, then a player with the small change in their mixed strategy will return immediately to the Nash
equilibrium. The equilibrium is said to be stable. If condition one does not hold then the equilibrium is unstable. If only condition one
holds then there are likely to be an infinite number of optimal strategies for the player who changed.

In the "driving game" example above there are both stable and unstable equilibria. The equilibria involving mixed strategies with
100% probabilities are stable. If either player changes their probabilities slightly, they will be both at a disadvantage, and their
opponent will have no reason to change their strategy in turn. The (50%,50%) equilibrium is unstable. If either player changes their
probabilities, then the other player immediately has a better strategy at either (0%, 100%) or (100%, 0%).

Stability is crucial in practical applications of Nash equilibria, since the mixed strategy of each player is not perfectly known, but has
to be inferred from statistical distribution of their actions in the game. In this case unstable equilibria are very unlikely to arise in
practice, since any minute change in the proportions of each strategy seen will lead to a change in strategy and the breakdown of the
equilibrium.

The Nash equilibrium defines stability only in terms of unilateral deviations. In cooperative games such a concept is not convincing
enough. Strong Nash equilibrium allows for deviations by every conceivable coalition.[13] Formally, a strong Nash equilibrium is a
Nash equilibrium in which no coalition, taking the actions of its complements as given, can cooperatively deviate in a way that
benefits all of its members.[14] However, the strong Nash concept is sometimes perceived as too "strong" in that the environment
allows for unlimited private communication. In fact, strong Nash equilibrium has to be Pareto efficient. As a result of these
requirements, strong Nash is too rare to be useful in many branches of game theory. However, in games such as elections with many
more players than possible outcomes, it can be more common than a stable equilibrium.

A refined Nash equilibrium known as coalition-proof Nash equilibrium (CPNE)[13] occurs when players cannot do better even if they
are allowed to communicate and make "self-enforcing" agreement to deviate. Every correlated strategy supported by iterated strict
dominance and on the Pareto frontier is a CPNE.[15] Further, it is possible for a game to have a Nash equilibrium that is resilient
against coalitions less than a specified size, k. CPNE is related to the theory of the core.

Finally in the eighties, building with great depth on such ideas Mertens-stable equilibria were introduced as a solution concept.
Mertens stable equilibria satisfy both forward induction and backward induction. In a game theory context stable equilibria now
usually refer to Mertens stable equilibria.

If a game has a unique Nash equilibrium and is played among players under certain conditions, then the NE strategy set will be
adopted. Sufficient conditions to guarantee that the Nash equilibrium is played are:

1. The players all will do their utmost to maximize their expected payoff as described by the game.
2. The players are flawless in execution.
3. The players have sufficient intelligence to deduce the solution.
4. The players know the planned equilibrium strategy of all of the other players.
5. The players believe that a deviation in their own strategy will not cause deviations by any other players.
6. There is common knowledge that all players meet these conditions, including this one. So, not only must each player

know the other players meet the conditions, but also they must know that they all know that they meet them, and
know that they know that they know that they meet them, and so on.

Examples of game theory problems in which these conditions are not met:

1. The first condition is not met if the game does not correctly describe the quantities a player wishes to maximize. In
this case there is no particular reason for that player to adopt an equilibrium strategy. For instance, the prisoner’s
dilemma is not a dilemma if either player is happy to be jailed indefinitely.

2. Intentional or accidental imperfection in execution. For example, a computer capable of flawless logical play facing a
second flawless computer will result in equilibrium. Introduction of imperfection will lead to its disruption either
through loss to the player who makes the mistake, or through negation of the common knowledge criterion leading to

Occurrence
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possible victory for the player. (An example would be a player suddenly putting the car into reverse in the game of
chicken, ensuring a no-loss no-win scenario).

3. In many cases, the third condition is not met because, even though the equilibrium must exist, it is unknown due to
the complexity of the game, for instance in Chinese chess.[16] Or, if known, it may not be known to all players, as
when playing tic-tac-toe with a small child who desperately wants to win (meeting the other criteria).

4. The criterion of common knowledge may not be met even if all players do, in fact, meet all the other criteria. Players
wrongly distrusting each other's rationality may adopt counter-strategies to expected irrational play on their
opponents’ behalf. This is a major consideration in "chicken" or an arms race, for example.

In his Ph.D. dissertation, John Nash proposed two interpretations of his equilibrium concept, with the objective of showing how
equilibrium points

(...) can be connected with observable phenomenon. One interpretation is rationalistic: if we assume that players are
rational, know the full structure of the game, the game is played just once, and there is just one Nash equilibrium,
then players will play according to that equilibrium. This idea was formalized by Aumann, R. and A. Brandenburger,
1995, Epistemic Conditions for Nash Equilibrium, Econometrica, 63, 1161-1180 who interpreted each player's mixed
strategy as a conjecture about the behaviour of other players and have shown that if the game and the rationality of
players is mutually known and these conjectures are commonly know, then the conjectures must be a Nash
equilibrium (a common prior assumption is needed for this result in general, but not in the case of two players. In this
case, the conjectures need only be mutually known).

A second interpretation, that Nash referred to by the mass action interpretation, is less demanding on players:

[i]t is unnecessary to assume that the participants have full knowledge of the total structure of the game, or the ability
and inclination to go through any complex reasoning processes. What is assumed is that there is a population of
participants for each position in the game, which will be played throughout time by participants drawn at random
from the different populations. If there is a stable average frequency with which each pure strategy is employed by the
average member of the appropriate population, then this stable average frequency constitutes a mixed strategy Nash
equilibrium.

For a formal result along these lines, see Kuhn, H. and et al., 1996, "The Work of John Nash in Game Theory," Journal of Economic
Theory, 69, 153-185.

Due to the limited conditions in which NE can actually be observed, they are rarely treated as a guide to day-to-day behaviour, or
observed in practice in human negotiations. However, as a theoretical concept in economics and evolutionary biology, the NE has
explanatory power. The payoff in economics is utility (or sometimes money), and in evolutionary biology is gene transmission; both
are the fundamental bottom line of survival. Researchers who apply games theory in these fields claim that strategies failing to
maximize these for whatever reason will be competed out of the market or environment, which are ascribed the ability to test all
strategies. This conclusion is drawn from the "stability" theory above. In these situations the assumption that the strategy observed is
actually a NE has often been borne out by research.[17]

The Nash equilibrium is a superset of the subgame perfect Nash equilibrium. The subgame perfect equilibrium in addition to the
Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible
threats, that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.

Where the conditions are met

NE and non-credible threats
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The image to the right shows a simple sequential game that illustrates
the issue with subgame imperfect Nash equilibria. In this game
player one chooses left(L) or right(R), which is followed by player
two being called upon to be kind (K) or unkind (U) to player one,
However, player two only stands to gain from being unkind if player
one goes left. If player one goes right the rational player two would
de facto be kind to him in that subgame. However, The non-credible
threat of being unkind at 2(2) is still part of the blue (L, (U,U)) Nash
equilibrium. Therefore, if rational behavior can be expected by both
parties the subgame perfect Nash equilibrium may be a more
meaningful solution concept when such dynamic inconsistencies
arise.

Nash's original proof (in his thesis) used Brouwer's fixed-point
theorem (e.g., see below for a variant). We give a simpler proof via the Kakutani fixed-point theorem, following Nash's 1950 paper
(he credits David Gale with the observation that such a simplification is possible).

To prove the existence of a Nash equilibrium, let  be the best response of player i to the strategies of all other players.

Here, , where , is a mixed-strategy profile in the set of all mixed strategies and  is the payoff function for
player i. Define a set-valued function  such that . The existence of a Nash equilibrium is
equivalent to  having a fixed point.

Kakutani's fixed point theorem guarantees the existence of a fixed point if the following four conditions are satisfied.

1.  is compact, convex, and nonempty.
2.  is nonempty.

3.  is convex.

4.  is upper hemicontinuous

Condition 1. is satisfied from the fact that  is a simplex and thus compact. Convexity follows from players' ability to mix strategies. 
 is nonempty as long as players have strategies.

Condition 2. is satisfied because players maximize expected payoffs which is a continuous function over a compact set. The
Weierstrass extreme value theorem guarantees that there is always a maximum value.

Condition 3. is satisfied as a result of mixed strategies. Suppose , then . i.e. if two
strategies maximize payoffs, then a mix between the two strategies will yield the same payoff.

Condition 4. is satisfied by way of Berge's maximum theorem. Because  is continuous and compact,  is upper
hemicontinuous.

Therefore, there exists a fixed point in  and a Nash equilibrium.[18]

Extensive and Normal form illustrations that show
the difference between SPNE and other NE. The
blue equilibrium is not subgame perfect because
player two makes a non-credible threat at 2(2) to
be unkind (U).

Proof of existence

Proof using the Kakutani fixed-point
theorem
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When Nash made this point to John von Neumann in 1949, von Neumann famously dismissed it with the words, "That's trivial, you
know. That's just a fixed-point theorem." (See Nasar, 1998, p. 94.)

We have a game  where  is the number of players and  is the action set for the players. All
of the action sets  are finite. Let  denote the set of mixed strategies for the players. The finiteness of the 
s ensures the compactness of .

We can now define the gain functions. For a mixed strategy , we let the gain for player  on action  be

The gain function represents the benefit a player gets by unilaterally changing their strategy. We now define 
where

for . We see that

Next we define:

It is easy to see that each  is a valid mixed strategy in . It is also easy to check that each  is a continuous function of , and
hence  is a continuous function. As the cross product of a finite number of compact convex sets,  is also compact and convex.
Applying the Brouwer fixed point theorem to  and  we conclude that So  has a fixed point in , call it . We claim that  is a
Nash equilibrium in . For this purpose, it suffices to show that

This simply states that each player gains no benefit by unilaterally changing their strategy, which is exactly the necessary condition
for a Nash equilibrium.

Now assume that the gains are not all zero. Therefore,  and  such that . Note then that

So let

Also we shall denote  as the gain vector indexed by actions in . Since  is the fixed point we have:

Alternate proof using the Brouwer fixed-point theorem
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Since  we have that  is some positive scaling of the vector . Now we claim that

To see this, we first note that if  then this is true by definition of the gain function. Now assume that 
. By our previous statements we have that

and so the left term is zero, giving us that the entire expression is  as needed.

So we finally have that

where the last inequality follows since  is a non-zero vector. But this is a clear contradiction, so all the gains must indeed be zero.
Therefore,  is a Nash equilibrium for  as needed.

If a player A has a dominant strategy  then there exists a Nash equilibrium in which A plays . In the case of two players A and
B, there exists a Nash equilibrium in which A plays  and B plays a best response to . If  is a strictly dominant strategy, A
plays  in all Nash equilibria. If both A and B have strictly dominant strategies, there exists a unique Nash equilibrium in which
each plays their strictly dominant strategy.

In games with mixed-strategy Nash equilibria, the probability of a player choosing any particular strategy can be computed by
assigning a variable to each strategy that represents a fixed probability for choosing that strategy. In order for a player to be willing to
randomize, their expected payoff for each strategy should be the same. In addition, the sum of the probabilities for each strategy of a

Computing Nash equilibria
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particular player should be 1. This creates a system of equations from which the probabilities of choosing each strategy can be
derived.[11]

In the matching pennies game, player A loses a
point to B if A and B play the same strategy and
wins a point from B if they play different
strategies. To compute the mixed-strategy Nash
equilibrium, assign A the probability p of
playing H and (1−p) of playing T, and assign B
the probability q of playing H and (1−q) of
playing T.

E[payoff for A playing H] = (−1)q + (+1)(1−q) = 1−2q
E[payoff for A playing T] = (+1)q + (−1)(1−q) = 2q−1
E[payoff for A playing H] = E[payoff for A playing T] ⇒ 1−2q = 2q−1 ⇒ q = 1/2

E[payoff for B playing H] = (+1)p + (−1)(1−p) = 2p−1
E[payoff for B playing T] = (−1)p + (+1)(1−p) = 1−2p
E[payoff for B playing H] = E[payoff for B playing T] ⇒ 2p−1 = 1−2p ⇒ p = 1/2

Thus a mixed-strategy Nash equilibrium, in this game, is for each player to randomly choose H or T with p = 1/2 and q = 1/2.
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