k-Means Clustering

Todd W. Neller Gettysburg College Laura E. Brown Michigan Technological University

Outline

- Unsupervised versus Supervised Learning
- Clustering Problem
- k-Means Clustering Algorithm
- Visual Example
- Worked Example
- Initialization Methods
- Choosing the Number of Clusters k
- Variations for non-Euclidean distance metrics
- Summary

Supervised Learning

- <u>Supervised Learning</u> Given training input and output (x, y) pairs, learn a function approximation mapping x's to y's.
 - Regression example: Given (*sepal_width*, *sepal_length*) pairs {(3.5, 5.1), (3, 4.9), (3.1, 4.6), (3.2, 4.7), ...}, learn a function f(*sepal_width*) that predicts *sepal_length* well for all *sepal_width* values.
 - Classification example: Given (balance, will_default) pairs {(808, false), (1813, true), (944, true), (1072, false), ...}, learn a function f(balance) that predicts will_default for all balance values.

Unsupervised Learning

- <u>Unsupervised Learning</u> Given input data only (no training labels/outputs) learn characteristics of the data's *structure*.
 - Clustering example: Given a set of (*neck_size*, *sleeve_length*) pairs representative of a target market, determine a set of clusters that will serve as the basis for shirt size design.
- Supervised vs. Unsupervised Learning
 - Supervised learning: Given input and output, learn approximate mapping from input to output. (The output is the "supervision".)
 - Unsupervised learning: Given input only, output structure of input data.

Clustering Problem

- **Clustering** is grouping a set of objects such that objects in the same group (i.e. cluster) are more similar to each other in some sense than to objects of different groups.
- Our specific clustering problem:
 - Given: a set of n observations $\{x_1, x_2, ..., x_n\}$, where each observation is a d-dimensional real vector
 - Given: a number of clusters k
 - Compute: a cluster assignment mapping $C(x_i) \in \{1, ..., k\}$ that minimizes the **within cluster sum of squares** (WCSS):

$$\sum_{i=1}^n \|\boldsymbol{x}_i - \boldsymbol{\mu}_{C(\boldsymbol{x}_i)}\|^2$$

where **centroid** $\mu_{C(x_i)}$ is the mean of the points in cluster $C(x_i)$

k-Means Clustering Algorithm

- General algorithm:
 - Randomly choose k cluster centroids $\mu_1, \mu_2, \dots \mu_k$ and arbitrarily initialize cluster assignment mapping C.
 - While remapping C from each x_i to its closest centroid μ_i causes a change in C:
 - Recompute $\mu_1, \mu_2, ..., \mu_k$ according to the new C
- In order to minimize the WCSS, we alternately:
 - Recompute C to minimize the WCSS holding μ_i fixed.
 - Recompute μ_j to minimize the WCSS holding *C* fixed. In minimizing the WCSS, we seek a clustering that minimizes Euclidean distance *variance* within clusters.

- Circle data points are randomly assigned to clusters (color = cluster).
- Diamond cluster centroids initially assigned to the means of cluster data points.

 Circle data points are reassigned to their closest centroid.

- Diamond cluster centroids are reassigned to the means of cluster data points.
- Note that one cluster centroid no longer has assigned points (red).

- After this, there is no circle data point cluster reassignment.
- WCSS has been minimized and we terminate.
- However, this is a *local minimum*, not a *global minimum* (one centroid per cluster).

- Given:
 - n=6 data points with dimensions d=2
 - k=3 clusters
 - Forgy initialization of centroids
- For each data point, compute the new cluster / centroid index to be that of the closest centroid point ...

Data		Clu Ce	uster entro	·/ oid
Da	ια	•	nuc/	
x1	x2		С	
-2	1		1	
-2	3		1	
3	2		0	
5	2		0	
1	-2		0	
1	-4		2	

index	x1	x2
0	1	-2
1	-2	1
2	1	-4

 For each centroid, compute the new centroid to be the mean of the data points assigned to that cluster / centroid index ...

Data		Clu Ce I	uster entro ndex	·/ oid k
x1	x2		С	
-2	1		1	
-2	3		1	
3	2		0	
5	2		0	
1	-2		0	
1	-4		2	

index	x1	x2
0	3	.7
1	-2	2
2	1	-4

 For each data point, compute the new cluster / centroid index to be that of the closest centroid point ...

Data		Ch Ce I	uster entro ndex	·/ oid k
x1	x2		С	
-2	1		1	
-2	3		1	
3	2		0	
5	2		0	
1	-2		2	
1	-4		2	

index	x1	x2
0	3	.7
1	-2	2
2	1	-4

 For each centroid, compute the new centroid to be the mean of the data points assigned to that cluster / centroid index ...

Data		Ch Ce I	uster entro ndex	·/ oid K
x1	x2		С	
-2	1		1	
-2	3		1	
3	2		0	
5	2		0	
1	-2		2	
1	-4		2	

index	x1	x2
0	4	2
1	-2	2
2	1	-3

- For each data point, compute the new cluster / centroid index to be that of the closest centroid point.
- With no change to the cluster / centroid indices, the algorithm terminates at a local (and in this example global) minimum WCSS = 1²+ 1²+ 1²+ 1²+ 1²+ 1²=6.

Data		uster entro ndex	·/ oid k
x2		С	
1		1	
3		1	
2		0	
2		0	
-2		2	
-4		2	
	ta x2 1 3 2 2 -2 -4	Clu Ce ta I x2 1 3 2 2 -2 -4	Cluster Centro Indexx2C11312020-22-42

Centroids

dex	x1	x2
0	4	2
1	-2	2
2	1	-3

ir

k-Means Clustering Assumptions

- *k*-Means Clustering assumes real-valued data distributed in clusters that are:
 - Separate
 - Roughly hyperspherical (circular in 2D, spherical in 3D) or easily clustered via a <u>Voronoi partition</u>.
 - Similar size
 - Similar density
- Even with these assumptions being met, k-Means Clustering is not guaranteed to find the global minimum.

k-Means Limitations Separate Clusters

Original Data

Results of *k***-means Clustering**

k-Means Limitations Hyperspherical Clusters

Original Data

Results of *k***-means Clustering**

Data available at: http://cs.joensuu.fi/sipu/datasets/

Original data source: Jain, A. and M. Law, Data clustering: A user's dilemma. LNCS, 2005.

k-Means Limitations Hyperspherical Clusters

Original Data

Results of *k***-means Clustering**

Data available at: http://cs.joensuu.fi/sipu/datasets/

Original data source: Chang, H. and D.Y. Yeung. Pattern Recognition, 2008. 41(1): p. 191-203.

k-Means Limitations Hyperspherical Clusters

Original Data

Results of *k***-means Clustering**

Data available at: <u>http://cs.joensuu.fi/sipu/datasets/</u> Original data source: Fu, L. and E. Medico. *BMC bioinformatics*, 2007. 8(1): p. 3.

k-Means Limitations Similar Size Clusters

Original Data

Results of *k***-means Clustering**

Image source: Tan, Steinbach, and Kumar Introduction to Data Mining http://www-users.cs.umn.edu/~kumar/dmbook/index.php

k-Means Limitations Similar Density Clusters

Original Data

Results of *k***-means Clustering**

Image source: Tan, Steinbach, and Kumar Introduction to Data Mining http://www-users.cs.umn.edu/~kumar/dmbook/index.php

k-Means Clustering Improvements

- As with many local optimization techniques applied to global optimization problems, it often helps to:
 - apply the approach through multiple separate iterations, and
 - retain the clusters from the iteration with the minimum WCSS.
- Initialization:
 - Random initial cluster assignments create initial centroids clustered about the global mean.
 - Forgy initialization: Choose unique random input data points as the initial centroids. Local (not global) minimum results are still possible. (<u>Try it out</u>.)
 - Distant samples: Choose unique input data points that approximately minimize the sum of inverse square distances between points (e.g. through stochastic local optimization).

Where does the given *k* come from?

- Sometime the number of clusters *k* is determined by the application. Examples:
 - Cluster a given set of (*neck_size, sleeve_length*) pairs into *k*=5 clusters to be labeled S/M/L/XL/XXL.
 - Perform <u>color quantization</u> of a 16.7M RGB color space down to a palette of *k*=256 colors.
- Sometimes we need to determine an appropriate value of *k*. How?

Determining the Number of Clusters k

- When *k* isn't determined by your application:
 - The Elbow Method:
 - Graph k versus the WCSS of iterated k-means clustering
 - The WCSS will generally decrease as k increases.
 - However, at the most natural k one can sometimes see a sharp bend or "elbow" in the graph where there is significant decrease up to that k but not much thereafter. Choose that k.
 - The Gap Statistic
 - Other methods

The Gap Statistic

- Motivation: We'd like to choose k so that clustering achieves the greatest WCSS reduction relative to uniform random data.
- For each candidate k:
 - Compute the log of the best (least) WCSS we can find $(log(W_k))$.
 - Estimate the expected value E^{*}_n{log(W_k)} on uniform random data.
 - One method: Generate 100 uniformly distributed data sets of the same size over the same ranges. Perform k-means clustering on each, and compute the log of the WCSS. Average the these log WCSS values.
 - The **gap statistic** for this k would then be $E_n^* \{\log(W_k)\} \log(W_k)$.
- Select the k that maximizes the gap statistic.
- R. Tibshirani, G. Walther, and T. Hastie. <u>Estimating the</u> <u>number of clusters in a data set via the gap statistic</u>

Variation: k-Medoids

- Sometimes the Euclidean distance measure is not appropriate (e.g. qualitative data).
- k-Medoids is a k-Means variation that allows a general distance measure $D(x_i, x_j)$:
 - Randomly choose k cluster medoids $m_1, m_2, \dots m_k$ from the data set.
 - While remapping C from each x_i to its closest medoid
 m_i causes a change in C:
 - Recompute each m_j to be the x_i in cluster j that minimizes the total of within-cluster medoid distances $\sum_{i',C(x_{i'})=j} D(x_i, x_{i'})$
- PAM (Partitioning Around Medoids) as above except when recomputing each m_j , replace with *any* non-medoid data set point x_i that minimizes the overall sum of within-cluster medoid distances.

Summary

- <u>Supervised learning</u> is given input-output pairs for the task of function approximation.
- Unsupervised learning is given input only for the task of finding structure in the data.
- <u>k-Means Clustering</u> is a simple algorithm for clustering data with separate, hyperspherical clusters of similar size and density.
- Iterated *k*-Means helps to find the best global clustering. Local cost minima are possible.

Summary (cont.)

- k-Means can be <u>initialized</u> with random cluster assignments, a random sample of data points (Forgy), or a distant sample of data points.
- The <u>number of clusters k</u> is sometimes determined by the application and sometimes via the <u>Elbow Method</u>, <u>Gap Statistic</u>, etc.
- <u>k-Medoids</u> is a variation that allows one to handle data with any suitable distance measure (not just Euclidean).