
Strimko By Resolution

Strimko: The Puzzle

Strimko is a popular puzzle on an n × n board, where apart from the n rows and columns, there are
n streams/chains each of length n, as shown in varying colors in Figure 1. Each of the n2 cells must
be filled with a natural number ∈ [1, n]. The constraint is that no number can appear more than once
in any row, column, or stream. Some of the cells are initially filled (Figure 1(left)), and you would
want to fill the remaining cells without violating the constraint. Each board has a unique solution (e.g.,
Figure 1(right)) that can be reached by logical inference alone.

Figure 1: Left: A Strimko puzzle, initial board. Right: Solved (final) board.

Knowledge Representation

The solver’s knowledge of the puzzle’s rules will be represented in propositional logic. We have two
choices: either (a) encode the complete knowledgbase upfront, and then only make inferences about cell-
content without further expanding the knowledgbase, or (b) start with fewer facts, but with each new
inference expand the knowledgbase to enable further inferences. We will take the second (incremental)
approach.

Consider an n × n Strimko board. So there are n rows, n columns, and n streams/chains of length n

1

each. Suppose ck
ij represents the proposition that cell (i, j) contains the number k 1. Then for each row

i and for each number k we will have a disjunction of the form:

ck
i1 ∨ ck

i2 ∨ ck
i3 ∨ . . . ∨ ck

in

This disjunction says that the number k must be somewhere in the row i. For k ∈ [1, n], this implies
that no number can appear more than once in a row. Since k ∈ [1, n], there will be n disjunctions of this
form for each row, and n2 disjunctions over all rows. There will be a similar disjunction for each column
and each chain as well, of which there are n each. Therefore, there will be a total 3n2 disjunctions of
this form.

Now for each cell (i, j) we will also have a disjunction of the form:

c1
ij ∨ c2

ij ∨ . . . ∨ cn
ij

which says that each cell must be filled with some number in [1, n]. Again there will be n2 disjunctions
of this form, over all cells.

The above 4n2 disjunctions constitute the base set of facts, that will be encoded before considering the
(accumulative) evidence. For each evidence ck

ij = True, i.e., when we know (i, j) must contain k for
sure, we can add to the knowledgbase the following conjunction for the row i:

¬ck
i,1 ∧ ¬ck

i,2 ∧ . . . ∧ ¬ck
i,j−1 ∧ ¬ck

i,j+1 ∧ . . . ∧ ¬ck
i,n.

This conjunction says that k can only occur in one cell in the entire row i. Such a conclusion can also
be made for the same evidence for the column j as well as its chain. Moreover, the same evidence will
lead to the following conjunction

¬c1
i,j ∧ ¬c2

i,j ∧ . . . ∧ ¬ck−1
i,j ∧ ¬ck+1

i,j ∧ . . . ∧ ¬cn
i,j ,

which says that cell (i, j) may contain nothing other than k. Thus there will be 4 conjunctions of length
n−1 each as shown above, for each evidence. These can be broken into 4(n−1) independent propositions
that are all true. These new facts will expand the knowledgbase.

Solving Strimko

Problem 1: 13 points

Implement the algorithm given in Algorithm 1 (10 points). Your code goes in the marked spot in
Boards.py in the basecode. The inputs to the algorithm – sets A and B – are computed as part of the
basecode. To run the program, execute

$python GUI.py

Suppose we have p evidences initially (input B), i.e., 4p(n− 1) initial facts as described in the previous
section. Each of these will reduce the length of one (of the 4n2) disjunctions (input A) by 1, according
to disjunctive syllogism 2 that takes the following form:

1If we reach the conclusion that (i, j) cannot contain k, it is represented as ¬ck
ij .

2Disjunctive syllogism is a special form of resolution.

2

x1 ∨ x2 ∨ x3 ∨ . . . ∨ xn

¬x1

∴ x2 ∨ x3 ∨ . . . ∨ xn

After each of the 4p(n− 1) facts have made their reductions on the disjunctions, if there is a disjunction
with length 0, then there must have been a contradiction in A and B – resolution refutation. Note that
if B is simply the initial set of facts, then this cannot happen. If there is any disjunction with length
1 (i.e., a conclusion of the form ck

ij = True) then this may be a newly inferred cell or may have been
already inferred before (Question 1: Give an example showing that it may have been inferred
before (3 points)). If new, then in its turn it may produce up to 4(n− 1) new facts, and the inference
procedure continues this way. But if neither the input has been refuted, nor is there any disjunction
with length 1 (i.e., a newly inferred cell), then resolveStrimko cannot solve this puzzle, and returns
status “Unsolved” (see Problem 2).

Problem 2: 17 points

The inference procedure in Algorithm 1 is sound because it is based on disjunctive syllogism which is
sound. However, it is not complete. Figure 2 shows a puzzle where it can make no further inference, but
you can. For instance, considering the red stream, you know that (C2, R5) must contain either 5 or 6.
But if it did contain 5, then the green stream couldn’t contain 5 anywhere – a contradiction. Therefore
(C2, R5) must contain 6. This line of reasoning is depth first (backtracking) search (DFS).

Write a DFS function (say, solveStrimko) that will call resolveStrimko as a subroutine, and use
its output (A, B and status) to make a guess and continue until a contradiction is reached (10 points).
Now you should be able to solve all included puzzles, even the ones marked “Unsolved” in the GUI.

Figure 2: An unsolved but solvable board.

3

Question 2: Prove that solveStrimko is complete (5 points).

Question 3: Prove that Sudoku (a more popular puzzle) is actually a special case of Strimko.
That is, solveStrimko can be applied to solve Sudoku as well (2 points). This question was
contributed by Landon Kraemer.

Extra credits

FOL: (10 points) Since the knowledgebase grows as O(n3), it is useful to represent it more compactly,
for large puzzles like Sudoku. Develop a first order logic representation, and rewrite the solver to
work with this representation.

ASP: (5 points) Research the topic of Answer set programming and write a short note on how you
could have written a complete Strimko solver with much less effort.

Submit

Submit answers to boxed questions 1–3 (+ extra credits ASP, if attempted) in print. Submit your code
as a zip folder by email, and include a README to indicate whether the extra credits problem FOL
was attempted, and any other remarks about the code.

4

Algorithm 1 resolveStrimko(A,B)
1: Input: Set A of current disjunctions, set B of p current facts.
2: Output: Potentially updated sets A and B, plus a flag indicating solve status
3: Local: Two sets new and old, latter initialized to B
4: while |B| < n2 do
5: new ← ∅
6: for all ck

ij ∈ old do
7: C ← Generate a set of (up to 4(n − 1)) negative facts for empty cells in row i, column j and

chain of (i, j)
8: for all disjunction d ∈ A do
9: for all ¬x ∈ C do

10: if d contains x then
11: Remove x from d
12: end if
13: end for
14: if |d| = 0 then
15: Return (A, B, “Contradiction”)
16: end if
17: end for
18: for all disjunction d ∈ A do
19: if |d| = 1 then
20: Remove d from A and add it to new (unless d is already in B)
21: end if
22: end for
23: end for
24: if new is empty then
25: Return (A, B, “Unsolved”)
26: end if
27: Add new to B
28: old← new
29: end while
30: Return (A, B, “Solved”)

5

