
Artificial Intelligence Programming Assignment 2
Comp440 Fall 2007 18 September 2007

This assignment is due October 9 in class.

1 Game playing programs that learn from experience [120]

In this problem, we will explore strategies for an agent that decides what to do by systematically
considering the outcomes of various sequences of actions that it might take. Our agent is in a
stochastic environment, where there is a probability distribution over a set of outcomes resulting
from an action in a state. We study this abstract problem in a concrete setting — that of playing
backgammon. We choose this setting because unlike real-world problems that have vague specifi-
cations, the rules of backgammon are simple, well-defined, and have a concise description. For a
nice description of rules, look at http://www.bkgm.com/rules.html.

Backgammon is an interesting game with a very large state space (estimated to be about 1020),
and an imposing branching factor (there are 21 unique dice rolls, and about 20 moves per roll, on
average).

Your assignment consists of two creating two backgammon players:

1. a baseline expectiminimax player for as described in Section 6.5 of your textbook. The most
critical component that you will create is the static evaluation function which estimates the
merit of boards generated during search.

2. a hill-climbing learner that tunes a parametric evaluation function of your own design.

You will then test both players against a random player and (for extra credit) against a cham-
pionship level player gnubg. This is just an overview description of the assignment. Additional
details are provided in subsequent sections of this document.

All the support code for this assignment is available at

http://www.owlnet.rice.edu/∼comp440/handouts/bkg.tar.gz.
A round-robin tournament among all student submitted programs will be held. The top three
teams in the tournament will receive extra credit of 30 points.

1.1 Background

There is a long history of work on backgammon players. Much of this work has been focused on
hand-crafted evaluation functions. There is a much smaller body of work exploring smart ways of
exploring fewer lines of play, and performing deeper searches. One of the earliest programs was
BKG, built by Hans Berliner of CMU. The best known player today is TD-Gammon which plays
at the world-championship level. TD-Gammon was built by Gerry Tesauro using reinforcement
learning to tune a parametric value function by self-play. Another impressive program, which is
better than most commercial programs, is gnubg. Gnubg is available at
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2http://www.bkgm.com/gnu/AllAboutGNU.html.

As you develop both your expectiminimax and hill-climbing players, you can consult papers, books
or online references on these and other systems for ideas you want to incorporate into your backgam-
mon player. You need to clearly cite your sources both in your code as well as in your report.

2 Your Tasks

Below are the tasks you should complete for this programming assignment. Although backgammon
normally involves betting using a “doubling cube”, we have removed the doubling aspect in order
to simplify the assignment.

2.1 Static evaluation functions

A good evaluation function should correctly estimate the probability of a win from different board
positions. An important aspect of designing a good static evaluation function is to choose features
of a board affect that the probability of winning from that position. In backgammon, one obvious
feature is the pip count for a player. Another feature is the number of blots. A blot is a vulnerability
for a player, because if an opposing piece lands on a blot, the piece will be moved to the bar.
Additionally, certain locations on the board are more valuable to be in than others.

• (20 points) First you will build the expectiminimax algorithm for selecting moves. Like
minimax, expectiminimax is a full-width search up to a particular look-ahead depth. Since
the game tree for backgammon has a large branching factor, deep look-ahead searches are not
feasible in tournament play (unless you distribute the computation over a cluster of machines,
which is possible because search expansions corresponding to particular dice-rolls can be done
in parallel). For this assignment, you will experiment with 1-ply and 2-ply searches. Here
1-ply refers to a roll of the dice by one of the players and the play he makes for that roll.

To test your player construct a simple static evaluation function utilizing at most 10 hand-
picked features of the backgammon board (such as the ones described above). Get your move
selector to return the best move according to this evaluation function. Tabulate the scores
over 100 games for 1-ply and 2-ply look-ahead search. Select our random player as your
opponent for this part. Comment on your results. Does your evaluation function perform
better with deeper look-ahead? Why or why not? For extra credit of 10 points do this
performance comparison against gnubg.

2.2 Learning an evaluation function

TD-Gammon uses a very simple but large feature set to estimate the probability of a win from a
board. For each point on the board, there is a feature vector (x1, x2, x3, x4), where all the elements
are 0, when there are no white pieces on that point. If there is exactly one white piece, it is
represented as the vector (1,0,0,0). If there are exactly two white pieces, the vector is (1,1,0,0). If
there are exactly three white pieces, the vector is (1,1,1,0). If there are n > 3 white pieces, the
vector (1, 1, 1, (n−3)/2) is used to represent it. Thus, just for white, there are 24×4 = 96 features,



3for both black and white, there are a total of 192 features. There are four additional features: the
number of white and black pieces on the bar, and the number of black and white pieces already
removed from the board. TD-Gammon scales each feature into the [0,1] range. These features are
designed for use in a multilayer feedforward neural network.

We can combine some or all of these features into one evaluation function by taking a weighted
linear combination of them:

F (s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

The fi’s are functions from board positions to real numbers (the function fi corresponds to the ith

feature). The magnitude of wi determines how big a contribution parameter i makes to the final
evaluation. The sign of wi determines whether parameter i has a positive or negative impact. In
general, the more weights you have, the more data you will generally need to learn them well.

The correct weight for each parameter often depends on other aspects of the game. The value of
hitting, for example, is usually greater when you are behind. So there is a relationship between the
number of checkers your opponent has on the bar and, the relative pip count. We can account for
such relationships by adding more terms to the static evaluator. To the linear terms we have already
described, we add second-degree terms consisting of pairs of parameters multiplied together. Each
second-degree term also has its own weight.

F (s) = w1f1(s) + w2f2(s) + . . . + wnfn(s) + wn+1f1(s)f2(s) + . . .+

For backgammon, the value produced by the static evaluator is most useful to us if we can interpret
it as the probability of the on-roll player winning from that position. In other words, we want the
evaluator to give us a number between zero and one. This allows the expectiminimax player to work
correctly (see the discussion on page 177 of your text for the need for scaling evaluation functions
appropriately). To generate probability estimates, which are in the [0, 1] range, we use a squashing
function to scale the sum of the weighted parameters. The recommended squashing function is
the sigmoid function σ(a) = 1

1+e−a . This is a smooth and increasing function which takes any real
value as input and produces a result between 0 and 1. Large negative numbers give values close to
zero and large positive numbers give values close to one. Thus, the final evaluation function V (s)
is:

V (s) = σ(F (s)) =
1

1 + e−F (s)

The neural network which TD-Gammon uses consists of an input layer of the above-described 196
features, a “hidden layer” of 20 units, and a layer of 4 output units. The four output units return
the probability of a white win, white gammon, black win, and black gammon, respectively. A
sample neural network is shown below:
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As you can see, there are a very large number of weights (almost 4000 in the network you will
build), so hand-tuning such a network is clearly not feasible.

• (100 points) Your second task is to have your player learn a good static evaluator for backgam-
mon by repeated self-play. We will use a neural network with the same structure as Tesauro’s
network for TD-Gammon with one variation: instead of 4 output units, you will have a single
output unit representing the probability of the black player winning from the current position.

Instead of using Tesauro’s method of learning, you will use simple hill-climbing algorithm to
learn the network weights. Suppose we have a the current weights wiA for our evaluation
function A. If we wish to improve A by incorporating the weights from another evaluation
function B we will use the update rule

wiA ← (1− α) ∗ wiA + α ∗ wiB

(1)

which will nudge the weights in A towards the weights in network B. The parameter α is
a small positive real number. You will have to experiment to find a good value for α – we
recommend that you start with a value like 0.05.

In order to build an effective network, one approach is try and build a champion by playing
other players and continually improving your champion by incorporating better players. Doing
this yields the following algorithm:

1. Initialize your champion network by choosing random weights or setting all of the weights
to some fixed constant.

2. Do the following N times:

(a) Pick a challenger for your champion. You need to make this choice carefully because
it directly impacts the evolution of your champion. A good option is to use a slightly
mutated version of your current champion. You can add a random number in the
[−0.5, 0.5] range to each of the weights in the champion network.



5(b) Determine which of the two networks is better. This is an important decision; simply
playing the two networks together once is not sufficient, since backgammon involves a
good deal of luck. A good choice is a best-of-x tournament. If the challenger beats
your current champion, incorporate the challenger using equation 1 from above.
Otherwise, ignore the challenger.
Also, as your network gets better over time, you will want to make sure that your
network is not brought astray by inferior players who get lucky. You will want
to make sure that a “lucky random” player does not cause you to worsen your
champion. This is done by monitoring the progress of your champion by periodically
testing it against the random player we provide. Do not use our random player as the
challenger. You use the random player to make sure that your champion improves
over time. You may see that it take N = 10, 000 iterations of the above algorithm in
order to see improvement in your champion. Get started early on this assignment!!

(c) In previous years, many students found this algorithm to be insufficient to get suf-
ficient stablization for a good player. A better alternative, that you are welcome to
try, is to train your hill-climbing player against the expectiminimax player. Once
your hill-climber gets reasonably better than expectiminimax, you can switch to
training against a champion and just use the expectiminimax to make sure that
your climber never gets off track.

(d) Note that since you are only training your network to play for the black player,
using the same network naively to play as the white player will not result in good
performance. In practice, we have found that simply subtracting the probability
that black will win from one does not provide a white player of equal strength.
Therefore, the easiest approach to using the same network to play for white is to
permute the inputs when white plays so as to interpret the white player as black
and vice versa.

2.3 What to turn in

You need to turn in a working, documented program that implements one Player for backgammon
that implements expectiminimax and one Player that learns from its experience. You should also
turn in a copy of your final neural network with the weights you learned. This should be done by
using the NeuralNetwork.writeTo(filename) method which serializes the neural network object
into a file.

The final evaluation function learned by your hill-climbing player will be used in a round robin
tournament. Results of the tournament will be posted on the newsgroup. The top three teams will
get extra credit points for this assignment.

You need to submit a written report providing

1. the results of your expectiminimax player against a random player on 100 games with a simple
evaluation function

2. your experience and approach building a learning player. For the learning player, you should
include a learning curve showing improvement in performance with training, as well as expla-



6nations of your experimental results. You should also play against your learning player and
describe some of the behaviors which it has learned.

For extra credit of 20 points, play both of your players against gnubg and report the results for 100
games.

3 The code

In this section, we will give you an overview of the provided code for this assignment. We have
provided the engine which simulates a backgammon game and allows you to program your player.
The Backgammon class implements this functionality - you can create a Backgammon game with two
provided players and then run the run() method to play the game and return the winner of the
game.

3.1 Drivers

We have provided two drivers for the game, which allows you to either play against your player
or watch as two different players play each other. The first of these drivers is TextDriver which
allows you to use a shell to interact with the backgammon game. You can simply run the main
method in TextDriver, and then type help in order to get a list of all of the available commands.

The second driver we provide is a Swing-based driver which allows you to use a GUI to play
backgammon. You can invoke this by running the main method of the class SwingDriver. Most
of the play is straight-forward clicking and dragging. Once you are done with a move, simply click
on the dice to end your turn.

We recommend that you write your own driver (likely without and human interface) to perform
your experiments. Neither of the drivers we provide are optimal for running a large number of
simulations.

3.2 Board

The edu.rice.comp440.board package provides all of the necessary support code to represent the
board as well as the dice. There are many utility functions on the Board which allow you to get
the number of pieces on the board, bar, as well as the number of pips left for each player.

3.3 Moves

The Move class represents a move in backgammon. We have provided a utility class MovementFactory
which will generate all of the possible Moves from a given board setup. Thus, you can simply ask
for the list of all valid moves and return the once which your player this is the best. In order to
get the state of the board after a given Move, you can use the Move.getCurrentBoard() function.



73.4 Neural Network

All of the code to implement the neural network are provided in the edu.rice.comp440.net
package. The neural network consists of a layer of InputUnits, followed by a number of layers
of HiddenUnits, and finally a layer of OutputUnits. The most interesting one of these is the
HiddenUnit, as OutputUnit simply extends it.

The HiddenUnit contains all of its weights in a double[] called weights. This is the set of
weights which you will be learning. You can create a copy of a given network by using the public
NeuralNetwork(NeuralNetwork source) method. Additionally, you can save a copy of your neural
network to disk by using the writeTo() method, and recover it by using the readFrom() method.

In order to get the neural network to evaluate a given input, you should use the getValue()
method, which returns a double[], containing an entry for each output unit. In your case, there
will only be one element in this array since you only have one output unit.

Lastly, we have provided a visualization tool for your neural network in the class NeuralNetworkVisualizer.
This class will show you the weights in your neural network, the red weights being negative and
green being positive. The intensity of the color indicates the magnitude of the weight.

3.5 Javadoc

All of the current Javadoc for this project is available online at

http://www.owlnet.rice.edu/∼comp440/pa2-javadoc/.


