
Analyzer Documentation

Prepared by:
 Tristan Jehan, CSO

 David DesRoches, Lead Audio Engineer

September 2, 2011
Analyzer Version: 3.08

The Echo Nest Corporation 48 Grove St. Suite 206, Somerville, MA 02144 (617) 628-0233 tristan@echonest.com http://the.echonest.com

http://the.echonest.com
http://the.echonest.com

Introduction
“Analyze” is a music audio analysis tool available as a free public web API (visit developer.echonest.com) and a stand-
alone command-line binary program for commercial partners (contact biz@echonest.com). The program takes a digital
audio file from disk (e.g. mp3, m4a, wav, aif, mov, mpeg, flv), or audio data piped in on the command line. It generates a
JSON-formatted text file that describes the track’s structure and musical content, including rhythm, pitch, and timbre. All
information is precise to the microsecond (audio sample).

Analyze is the world’s only “music listening” API. It uses proprietary machine listening techniques to simulate how people
perceive music. It incorporates principles of psychoacoustics, music perception, and adaptive learning to model both
the physical and cognitive processes of human listening. The output of analyze contains a complete description of all
musical events, structures, and global attributes such as key, loudness, time signature, tempo, beats, sections, harmony.
It allows developers to create applications related to the way people hear and interact with music.

The output data allows developers to

1) interpret: understand, describe, and represent music.
Applications include music similarity, playlisting, music visualizers, and analytics.

2) synchronize: align music with other sounds, video, text, and other media.
Applications include automatic soundtrack creation and music video games.

3) manipulate: remix, mashup, or process music by transforming its content.
An example is the automatic ringtone application mashtone for the iPhone.

Output Data
• meta data: analyze, compute, and track information.

• track data

• time signature: an estimated overall time signature of a track. The time signature (meter) is a notational
convention to specify how many beats are in each bar (or measure).

• key: the estimated overall key of a track. The key identifies the tonic triad, the chord, major or minor, which
represents the final point of rest of a piece.

• mode: indicates the modality (major or minor) of a track, the type of scale from which its melodic content is
derived.

• tempo: the overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the
speed or pace of a given piece and derives directly from the average beat duration.

• loudness: the overall loudness of a track in decibels (dB). Loudness values in the Analyzer are averaged across
an entire track and are useful for comparing relative loudness of segments and tracks. Loudness is the quality of
a sound that is the primary psychological correlate of physical strength (amplitude).

• duration: the duration of a track in seconds as precisely computed by the audio decoder.

• end of fade in: the end of the fade-in introduction to a track in seconds.

• start of fade out: the start of the fade out at the end of a track in seconds.

• codestring, echoprintstring: these represent two different audio fingerprints computed on the audio and are
used by other Echo Nest services for song identification. For more information on Echoprint, see
http://echoprint.me.

• timbre, pitch, and loudness are described in detail as part of the segments interpretation below.

• sequenced data: the Analyzer breaks down the audio into musically relevant elements that occur sequenced in time.
From smallest to largest those include:

Analyze v3.08 Documentation
 1

http://itunes.apple.com/us/app/mashtone-ringtone-remix/id443257388?mt=8
http://itunes.apple.com/us/app/mashtone-ringtone-remix/id443257388?mt=8
http://echoprint.me
http://echoprint.me

• segments: a set of sound entities (typically under a second) each relatively uniform in timbre and harmony.
Segments are characterized by their perceptual onsets and duration in seconds, loudness (dB), pitch and timbral
content.

• loudness_start: indicates the loudness level at the start of the segment

• loudness_max_time: offset within the segment of the point of maximum loudness

• loudness_max: peak loudness value within the segment

• tatums: list of tatum markers, in seconds. Tatums represent the lowest regular pulse train that a listener intuitively
infers from the timing of perceived musical events (segments).

• beats: list of beat markers, in seconds. A beat is the basic time unit of a piece of music; for example, each tick of
a metronome. Beats are typically multiples of tatums.

• bars: list of bar markers, in seconds. A bar (or measure) is a segment of time defined as a given number of beats.
Bar offsets also indicate downbeats, the first beat of the measure.

• sections: a set of section markers, in seconds. Sections are defined by large variations in rhythm or timbre, e.g.
chorus, verse, bridge, guitar solo, etc.

JSON Schema Example
{

“meta”:
! {

“analyzer_version”:”3.08b”, "detailed_status":"OK", "filename":"/Users/Jim/
Desktop/file.mp3", "artist":"Michael Jackson", "album":"Thriller",
"title":"Billie Jean", "genre":"Rock", "bitrate":192, "sample_rate":44100,

"seconds":294, "status_code":0, "timestamp":1279120425, "analysis_time":
3.83081

! },
“track”:
! {

"num_samples":6486072, "duration":294.15293,
"sample_md5":"0a84b8523c00b3c8c42b2a0eaabc9bcd", "decoder":"mpg123",
"offset_seconds":0, "window_seconds":0, "analysis_sample_rate":22050,
"analysis_channels":1, "end_of_fade_in":0.87624, "start_of_fade_out":
282.38948, "loudness":-7.078, "tempo":117.152, "tempo_confidence":0.848,

"time_signature":4, "time_signature_confidence":0.42, "key":6,
"key_confidence":0.019, "mode":1, "mode_confidence":0.416,
"codestring":"eJwdk8U7m4Rz9Pej...tbtSnk8U7m4Rz980uF", "code_version":3.15,
"echoprintstring":"eJzFnQuyrTquZbsENjamOf5A_5t...pDF6eF__7eH_D9MWE8p",
"echoprint_version": 4.12, "synchstring": "eJxlWwmWJCsOu0ocIWz2-1-

ssSRDZP...nUf0aeyz4=", "synch_version": 1
! },
“bars”:
! [{"start":1.49356, "duration":2.07688, "confidence":0.037}, ...],
"beats":

! [{"start":0.42759, "duration":0.53730, "confidence":0.936}, ...],
"tatums":
! [{"start":0.16563, "duration":0.26196, "confidence":0.845}, ...],
"sections":

Analyze v3.08 Documentation
 2

! [{"start":0.00000, "duration":8.11340, "confidence":1.000}, ...],
"segments":
! [{

"start":0.00000, "duration":0.31887, "confidence":1.000,

"loudness_start":-60.000, "loudness_max_time":0.10242,
"loudness_max":-16.511, "pitches":[0.370, 0.067, 0.055, 0.073, 0.108, 0.082,
0.123, 0.180, 0.327, 1.000, 0.178, 0.234], "timbre":[24.736, 110.034, 57.822,
-171.580, 92.572, 230.158, 48.856, 10.804, 1.371, 41.446, -66.896, 11.207]

! }, ...]

}

Analyze v3.08 Documentation
 3

Interpretation

Analyze v3.08 Documentation
 4

!"#$%&'()*+,'$-#)+./0+/")11'2')345

.
/
0
+2
"
)
11
'2
')
3
45

4'$)+65)2"3*57
8 9 :8 :9 ;8 ;9 <8

;

=

>

?

:8

:;

.'42@+A4#)3B4@

C
'4
2
@
)
5
+6
/
D
:
E+
FF
F+
E+
G
D
:
;
7

4'$)+65)2"3*57
8 9 :8 :9 ;8 ;9 <8

;

=

>

?

:8

:;

8 9 :8 :9 ;8 ;9 <8
!>8

!=8

!;8

8

;8

&"H*3)55+D+!<FI:<

J"H*3)55+/H#K)

&"
H
*
3
)
5
5
+6
*
G
7

4'$)+65)2"3*57

8 9 :8 :9 ;8 ;9 <8
8

:

;

<

=
,%4H$+L+G)%4+L+M"N3-)%4+J"2%4'"3E+O%4)E+022)&)#%4'"3E+%3*+A)24'"35

5
C
)
)
*
+6
5
)
2
"
3
*
5
7

4'$)+65)2"3*57

4)$C"+D+:;:F;>+68F>8?7
4'$)A'B3%4H#)+D+=P=+6:7
Q)R+D+S+$%T"#+68FU>>+V+:7

Plot of the JSON data for a 30-second excerpt of “around the world” by Daft Punk.

section

bar

beattatum

confidence

Rhythm

Beats are subdivisions of bars. Tatums are subdivisions of beats. That is, bars always align with a beat and ditto tatums.
Note that a low confidence does not necessarily mean the value is inaccurate. Exceptionally, a confidence of -1 indicates
“no” value: the corresponding element must be discarded. A track may result with no bar, no beat, and/or no tatum if no
periodicity was detected. The time signature ranges from 3 to 7 indicating time signatures of 3/4, to 7/4. A value of -1
may indicate no time signature, while a value of 1 indicates a rather complex or changing time signature.

Pitch

The key is a track-level attribute ranging from 0 to 11 and corresponding to one of the 12 keys: C, C#, D, etc. up to B. If
no key was detected, the value is -1. The mode is equal to 0 or 1 for “minor” or “major” and may be -1 in case of no
result. Note that the major key (e.g. C major) could more likely be confused with the minor key at 3 semitones lower (e.g.
A minor) as both keys carry the same pitches. Harmonic details are given in segments below.

Segments

Beyond timing information (start, duration), segments include loudness, pitch, and timbre features.

• loudness information (i.e. attack, decay) is given by three data points, including dB value at onset (loudness_start), dB
value at peak (loudness_max), and segment-relative offset for the peak loudness (loudness_max_time). The dB value
at onset is equivalent to the dB value at offset for the preceding segment. The last segment specifies a dB value at
offset (loudness_end) as well.

• pitch content is given by a “chroma” vector, corresponding to the 12 pitch classes C, C#, D to B, with values ranging
from 0 to 1 that describe the relative dominance of every pitch in the chromatic scale. For example a C Major chord
would likely be represented by large values of C, E and G (i.e. classes 0, 4, and 7). Vectors are normalized to 1 by their
strongest dimension, therefore noisy sounds are likely represented by values that are all close to 1, while pure tones are
described by one value at 1 (the pitch) and others near 0.

• timbre is the quality of a musical note or sound that distinguishes different types of musical instruments, or voices. It is
a complex notion also referred to as sound color, texture, or tone quality, and is derived from the shape of a segment’s
spectro-temporal surface, independently of pitch and loudness. The Echo Nest Analyzer’s timbre feature is a vector
that includes 12 unbounded values roughly centered around 0. Those values are high level abstractions of the spectral
surface, ordered by degree of importance. For completeness however, the first dimension represents the average
loudness of the segment; second emphasizes brightness; third is more closely correlated to the flatness of a sound;
fourth to sounds with a stronger attack; etc. See an image below representing the 12 basis functions (i.e. template
segments). The actual timbre of the segment is best described as a linear combination of these 12 basis functions
weighted by the coefficient values: timbre = c1 x b1 + c2 x b2 + ... + c12 x b12, where c1 to c12 represent the 12
coefficients and b1 to b12 the 12 basis functions as displayed below. Timbre vectors are best used in comparison with
each other.

12 basis functions for the timbre vector: x = time, y = frequency, z = amplitude

Confidence Values

Many elements at the track and lower levels of analysis include confidence values, a floating-point number ranging from
0.0 to 1.0. Confidence indicates the reliability of its corresponding attribute. Elements carrying a small confidence value
should be considered speculative. There may not be sufficient data in the audio to compute the element with high
certainty.

Analyze v3.08 Documentation
 5

Synchstring
With Analyzer v3.08, a new data string is introduced. It works with a simple synchronization algorithm to be implemented

on the client side, which generates offset values in numbers of samples for 3 locations in the decoded waveform, the

beginning, the middle, and the end. These offsets allow the client application to detect decoding errors (when offsets

mismatch). They provide for synching with sample accuracy, the JSON timing data with the waveform, regardless of

which mp3 decoder was used on the client side (quicktime, ffmpeg, mpg123, etc.) Since every decoder makes its own

signal-dependent offset and error correction, sample accuracy isn’t manageable by other means, such as decoder type

and version tracking. For implementation examples of the synchronization algorithm, please go to the github repository at

http://github.com/echonest/synchdata.

Analyze v3.08 Documentation
 6

http://github.com/echonest/synchdata
http://github.com/echonest/synchdata

