
RL-Glue Python Codec 2.0 Manual

Brian Tanner :: brian@tannerpages.com

Contents

1 Introduction 2

1.1 Software Requirements . 3

1.2 Getting the Codec . 3

1.3 Installing the Codec . 3

1.3.1 setup.py . 4

1.3.2 The no-install install . 4

2 Sample Project 5

2.1 Skeleton Agent . 5

2.2 Skeleton Environment . 6

2.3 Skeleton Experiment . 7

2.4 Running All Three Components Together . 7

2.5 Going Further – Mines Sarsa Example Project . 9

2.5.1 Sample-Mines-Environment . 9

2.5.2 Samples-Sarsa-Agent . 10

2.5.3 Sample-Experiment . 10

3 Who creates and frees memory? 10

4 Advanced Features 11

4.1 Task Specification Parser . 11

1

4.2 Connecting on custom ports to custom hosts . 11

5 Codec Specification Reference 12

5.1 Types . 12

5.1.1 Simple Types . 12

5.1.2 Structure Types . 12

5.2 Functions . 13

5.2.1 Agent Functions . 13

5.2.2 Environment Functions . 14

5.2.3 Experiments Functions . 14

6 Changes and 2.x Backward Compatibility 15

6.1 Agent/Environment Loading . 15

7 Frequently Asked Questions 15

7.1 Where can I get more help? . 16

7.1.1 Online FAQ . 16

7.1.2 Google Group / Mailing List . 16

8 Credits and Acknowledgements 16

8.1 Contributing . 16

1 Introduction

This document describes how to use the Python RL-Glue Codec, a software library that provides
socket-compatibility with the RL-Glue Reinforcement Learning software library.

For general information and motivation about the RL-Glue1 project, please refer to the documen-
tation provided with that project.

This codec will allow you to create agents, environments, and experiment programs in Python.
1http://glue.rl-community.org/

2

http://glue.rl-community.org/

This software project is licensed under the Apache-2.02 license. We’re not lawyers, but our intention
is that this code should be used however it is useful. We’d appreciate to hear what you’re using it
for, and to get credit if appropriate.

This project has a home here:
http://glue.rl-community.org/Home/Extensions/python-codec

1.1 Software Requirements

To run agents, environments, and experiments created with this codec, you will need to have
RL-Glue installed on your computer.

Compiling and running components with this codec requires Python.

The code has some optimizations that detect if you have NumPy3 installed, and will speed up
some parts of the code automatically in that case. We’re working on looking at more ways to
transparently make this codec faster.

Possible Contribution: Someone with Python experience could help us find out what version of
Python is required to use this codec, and could help us update the codec to be as robust as possible
to older versions. Also, if someone wants to speed up this codec, we have some ideas but we are
not really Python programmers.

1.2 Getting the Codec

The codec can be downloaded either as a .tar.gz or can be checked out of the subversion repository
where it is hosted.

The .tar.tz distribution can be found here:
http://code.google.com/p/rl-glue-ext/wiki/Python

To check the code out of subversion:
svn checkout http://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Python Python-Codec

1.3 Installing the Codec

There are two options on how you can install the Python codec, depending on whether you’d like
to use the automated method, or if you’d like to setup your Python paths yourself.

2http://www.apache.org/licenses/LICENSE-2.0.html
3http://numpy.scipy.org/

3

http://glue.rl-community.org/Home/Extensions/python-codec
http://code.google.com/p/rl-glue-ext/wiki/Python
http://www.apache.org/licenses/LICENSE-2.0.html
http://numpy.scipy.org/

1.3.1 setup.py

You can install the Python codec the “usual” way, using the setup.py script that is made possible
by Python Distutils4.

There are many options for exactly how to build and where to install the codec. If you are interested
in a custom install or installing to a custom location, we recommend reading the Python installation
docs.

To see a list of the available options:

>$ cd /path/to/codecs/Python
>$ python setup.py --help

To install the Python codec into your system (you may need sudo or root access to do this):

>$ cd /path/to/codecs/Python
>$ python setup.py install

If you are not able to install the codec because it requires root access on your system and you do
not have these privileges, you can do a local install of the codec in your user directory. Please see
the Python installation docs for more details.

After installing the Python codec, you will be able to access all of the RL-Glue Python classes and
functions without needing to specify them in your $PYTHONPATH environment variable.

Removing the Codec
Distutils does not provide an automated way to remove the Python modules that it installs, because
in general there may be dependencies between modules and it does not want to break your system.
We recommend that you only remove the installed Python codec from your system manually if you
know what you are doing. Future versions of the codec will install over the existing one.

1.3.2 The no-install install

You may prefer not to install the codec, to instead specify the codec source files in your $PYTHONPATH
variable when necessary. In this case, there is no real “installation” for the codec per-se. The
important thing is to put the source code somewhere that is easy to get at.

For the rest of this section, we’ll assume you’ve put this project in a subdirectory of your home
directory called PythonCodec, so the src directory is at: ~/PythonCodec/src.

Python will want to know where the codec source files are, so we’ll frequently use code like:
4http://docs.python.org/distutils/index.html

4

http://docs.python.org/install/index.html#the-new-standard-distutils
http://docs.python.org/install/index.html#the-new-standard-distutils
http://docs.python.org/install/index.html#the-new-standard-distutils
http://docs.python.org/distutils/index.html

>$ PYTHONPATH=~/PythonCodec/src python do_something_with_codec.py

You can make your life easier by adding the path to the codec source to your PYTHONPATH environ-
ment variable, something like (in Bash):

>$ export PYTHONPATH=~/PythonCodec/src:$PYTHONPATH

Now your commands can be less cluttered, the same as if you had installed the codec:

>$ python do_something_with_codec.py

2 Sample Project

We have included two example projects with this codec, located in the examples directory. Each
project contains an agent, environment, and experiment written for this Python codec. The two
projects are skeleton and mines-sarsa-sample.

The skeleton contains all of the bare-bones plumbing that is required to create an agent/environment/experiment
with this codec and might be a good starting point for creating your own components.

The mines-sarsa-sample contains a fully functional tabular Sarsa learning algorithm, a discrete-
observation grid world problem, and an experiment program that can run these together and gather
results. More details below in Section 2.5.

In the following sections, we will describe the skeleton project. Running and using the mines-sarsa-sample
is analogous.

2.1 Skeleton Agent

We have provided a skeleton agent with the codec that is a good starting point for agents that you
may write in the future. It implements all the required functions and provides a good example of
how to compile a simple agent.

The pertinent file is:

examples/skeleton/skeleton_agent.py

This agent does not learn anything and randomly chooses integer action 0 or 1.

You can compile and run the agent like:

>$ cd examples/skeleton
>$ python skeleton_agent.py

5

You will see something like:

RL-Glue Python Agent Codec Version: 2.0 (Build 250)
Connecting to 127.0.0.1 on port 4096...

This means that the skeleton agent is running, and trying to connect to the rl glue executable
server on the local machine through port 4096!

You can kill the process by pressing CTRL-C on your keyboard.

The Skeleton agent is very simple and well documented, so we won’t spend any more time talking
about it in these instructions. Please open it up and take a look.

2.2 Skeleton Environment

We have provided a skeleton environment with the codec that is a good starting point for environ-
ments that you may write in the future. It implements all the required functions and provides a
good example of how to compile a simple environment. This section will follow the same pattern
as the agent version (Section 2.1). This section will be less detailed because many ideas are similar
or identical.

The pertinent file is:

examples/skeleton/skeleton_environment.py

This environment is episodic, with 21 states, labeled {0, 1, . . . , 19, 20}. States {0, 20} are terminal
and return rewards of {−1,+1} respectively. The other states return reward of 0. There are two
actions, {0, 1}. Action 0 decrements the state number, and action 1 increments it. The environment
starts in state 10.

You can compile and run the environment like:

>$ cd examples/skeleton
>$ python skeleton_environment.py

You will see something like:

RL-Glue Python Environment Codec Version: 2.0 (Build 250)
Connecting to 127.0.0.1 on port 4096...

This means that the skeleton environment is running, and trying to connect to the rl glue exe-
cutable server on the local machine through port 4096!

6

You can kill the process by pressing CTRL-C on your keyboard.

The Skeleton environment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.3 Skeleton Experiment

We have provided a skeleton experiment with the codec that is a good starting point for experiments
that you may write in the future. It implements all the required functions and provides a good
example of how to compile a simple experiment. This section will follow the same pattern as the
agent version (Section 2.1). This section will be less detailed because many ideas are similar or
identical.

The pertinent files are:

examples/skeleton/skeleton_experiment.py

This experiment runs RL Episode a few times, sends some messages to the agent and environment,
and then steps through one episode using RL step.

>$ cd examples/skeleton
>$ python skeleton_experiment.py

You will see something like:

Experiment starting up!
RL-Glue Python Experiment Codec Version: 2.0 (Build 250)

Connecting to 127.0.0.1 on port 4096...

This means that the skeleton experiment is running, and trying to connect to the rl glue exe-
cutable server on the local machine through port 4096!

You can kill the process by pressing CTRL-C on your keyboard.

The Skeleton experiment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.4 Running All Three Components Together

At this point, we’ve compiled and run each of the three components, now it’s time to run them
with the rl glue executable server. The following will work from the examples directory if you
have them all built, and RL-Glue installed in the default location:

7

>$ cd examples/skeleton
>$ rl_glue &
>$ python skeleton_agent.py &
>$ python skeleton_environment.py &
>$ python skeleton_experiment.py &

If RL-Glue is not installed in the default location, you’ll have to start the rl glue executable server
using its full path (unless it’s in your PATH environment variable):

>$ /path/to/rl-glue/bin/rl_glue &

You should see output like the following if it worked:

>$ rl_glue &
RL-Glue Version 3.0-beta-1, Build 848:856
RL-Glue is listening for connections on port=4096

>$ PYTHONPATH=~/PythonCodec/src python skeleton_agent.py &
RL-Glue Python Agent Codec Version: 2.0 (Build 250)

Connecting to 127.0.0.1 on port 4096...
Agent Codec Connected
RL-Glue :: Agent connected.

>$ PYTHONPATH=~/PythonCodec/src python skeleton_environment.py &
RL-Glue Python Environment Codec Version: 2.0 (Build 250)

Connecting to 127.0.0.1 on port 4096...
Environment Codec Connected
RL-Glue :: Environment connected.

>$ PYTHONPATH=~/PythonCodec/src python skeleton_experiment.py &
Experiment starting up!
RL-Glue Python Experiment Codec Version: 2.0 (Build 250)

Connecting to 127.0.0.1 on port 4096...
RL-Glue :: Experiment connected.

RL_init called, the environment sent task spec: VERSION RL-Glue-3.0
PROBLEMTYPE episodic DISCOUNTFACTOR 1.0 OBSERVATIONS INTS (0 20)
ACTIONS INTS (0 1) REWARDS (-1.0 1.0)
EXTRA skeleton_environment(Python) by Brian Tanner.

----------Sending some sample messages----------
Agent responded to "what is your name?"
with: my name is skeleton_agent, Python edition!

8

Agent responded to "If at first you don’t succeed; call it version 1.0"
with: I don’t know how to respond to your message

Environment responded to "what is your name?"
with: my name is skeleton_environment, Python edition!
Environment responded to "If at first you don’t succeed; call it version 1.0"
with: I don’t know how to respond to your message

----------Running a few episodes----------
Episode 0 42 steps 1.0 total reward 1 natural end
Episode 1 28 steps 1.0 total reward 1 natural end

Episode 2 96 steps -1.0 total reward 1 natural end
Episode 3 52 steps 1.0 total reward 1 natural end
Episode 4 100 steps 0.0 total reward 0 natural end
Episode 5 1 steps 0.0 total reward 0 natural end
Episode 6 82 steps 1.0 total reward 1 natural end

----------Stepping through an episode----------
First observation and action were: 10 and: 1

----------Summary----------
It ran for 66 steps, total reward was: -1.0

2.5 Going Further – Mines Sarsa Example Project

The skeleton sample project is extremely limited and only shows the mechanics of how RL-Glue
components are structured using the Python codec. The mines-sarsa sample project is much
richer.

More details about the mines-sarsa sample project can be found at their RL-Library home:
http://library.rl-community.org/packages/mines-sarsa-sample

2.5.1 Sample-Mines-Environment

The mines environment is internally a two-dimensional, discrete grid world where the agent receives
a penalty per step until reaching a goal state, hopefully without stepping on any exploding land-
mines along the way. The (x,y) state is flattened into a discrete, scalar observation for the agent.
This environment can receive special messages from the experiment program to print the current
state to the screen, and also to toggle between random starting states and a fixed starting-state

9

http://library.rl-community.org/packages/mines-sarsa-sample
http://code.google.com/p/rl-library/source/browse/trunk/projects/packages/examples/mines-sarsa-python/sample_mines_environment.py

specified by the experiment.

The task specification string5 is manually because there is not yet a task spec builder for Python.

2.5.2 Samples-Sarsa-Agent

The SARSA agent is a tabular learning agent that uses ε − greedy exploration as described in
Reinforcement Learning: An Introduction by Sutton and Barto.

The SARSA agent parses the task specification string using the Python task spec parser. This agent
can receive special messages from the experiment program to pause/unpause learning, pause/unpause
exploring, save the current value function to a file, and load the the value function from a file.

2.5.3 Sample-Experiment

The sample experiment program runs the show. First, it alternates running the agent in the
environment for a number of episodes, and telling the agent to pause learning so that the current
performance can be evaluated. These results are saved to a comma-separated-value file.

The sample experiment then tells the agent to save the value function to a file, and then resets the
experiment (and agent) to initial conditions. After verifying that the agent’s initial policy is bad,
the experiment tells the agent to load the value function from the file. The agent is evaluated again
using this previously-learned value function, and performance is dramatically better.

Finally, the experiment sends a message to specify that the environment should use a fixed (instead
of random) starting state, and runs the agent from that fixed start state for a while.

3 Who creates and frees memory?

The RL-Glue technical manual has a section called Who creates and frees memory?. The general
approach recommended there is to make a copy of data you want to keep beyond the method it
was given to you. The same rules of thumb from that manual should be followed when using the
Python codec.

5http://glue.rl-community.org/Home/rl-glue/task-spec-language

10

http://code.google.com/p/rl-library/source/browse/trunk/projects/packages/examples/mines-sarsa-python/sample_sarsa_agent.py
http://www.cs.ualberta.ca/~sutton/book/ebook/node64.html
http://glue.rl-community.org/Home/rl-glue/task-spec-language

4 Advanced Features

4.1 Task Specification Parser

As of fall 2008, we’ve updated the task specification language:
http://glue.rl-community.org/Home/rl-glue/task-spec-language

The new Python task spec parser can also be used by agents to decode the task spec string for
agent init. The sample sarsa agent in Section 2.5.2 demonstrates how to do this. The Python
parser (unlike Java) is not a task spec builder, so task specs must be constructed manually (for
now) when using Python to implement environments.

4.2 Connecting on custom ports to custom hosts

This section will explain how to set custom target IP addresses (to connect over the network) and
custom ports (to run multiple experiments on one machine or to avoid firewall issues). Sometimes
you will want run the rl glue server on a port other than the default (4096) either because of
firewall issues, or because you want to run multiple instances on the same machine.

In these cases, you can tell your Python agent, environment, or experiment program to connect
on a custom port and/or to a custom host using the environment variables RLGLUE PORT and
RLGLUE HOST.

For example, try the following code:

> $ RLGLUE_PORT=1025 RLGLUE_HOST=yahoo.ca python skeleton_agent.py

That command could give output like:

RL-Glue Python Agent Codec Version: 2.0-RC1 (Build 446)
Connecting to yahoo.ca on port 1025...

This works for agents, environments, and experiments. In practice, yahoo.ca probably isn’t running
an RL-Glue server.

You can specify the port, the host, neither, or both. Ports must be numbers, hosts can be hostnames
or ip addresses. Default port value is 4096 and host is 127.0.0.1.

If you don’t like typing these variables every time, you can export them so that the value will be
set for future calls in the same session:

> $ export RLGLUE_PORT=1025
> $ export RLGLUE_HOST=mydomain.com

11

http://glue.rl-community.org/Home/rl-glue/task-spec-language

Remember, on most *nix systems, you need superuser privileges to listen on ports lower than
1024, so you probably want to pick one higher than that.

5 Codec Specification Reference

This section will explain how the RL-Glue types and functions are defined for this codec. This isn’t
meant to be the most exciting section of this document, but it will be handy.

Instead of re-creating information that is readily available in the PythonDocs, we will give pointers
were appropriate.

5.1 Types

5.1.1 Simple Types

Unlike the C/C++ codec, we will not be using typedef statements to create special labels for the
types. Since Python is loosely typed, these things aren’t so hard and fast:

• reward is double

• terminal is int (1 for terminal, 0 for non-terminal) We hope to replace these with boolean
eventually.

• messages are strings

• task specifications are strings

5.1.2 Structure Types

All of the major structure types (observations, actions) extend the RL Abstract Type class, which
has there lists: for integers, doubles, and chars.

The class is defined as:

class RL_Abstract_Type:
def __init__(self,numInts=None,numDoubles=None,numChars=None):

self.intArray = []
self.doubleArray = []
self.charArray = []
if numInts != None:

self.intArray = [0]*numInts
if numDoubles != None:

12

self.doubleArray = [0.0]*numDoubles
if numChars != None:

self.charArray = [’’]*numChars

def sameAs(self,otherAbstractType):
return self.intArray==otherAbstractType.intArray and
self.doubleArray==otherAbstractType.doubleArray and
self.charArray==otherAbstractType.charArray

The other types that inherit from RL Abstract Type but add no specialization are:

class Action(RL_Abstract_Type)
class Observation(RL_Abstract_Type)

The structure of the composite types are listed below. Note that this code is not accurate in terms
of the available constructors, it is just meant to illustrate the member names.

class Observation_action:
def __init__(self,theObservation,theAction):

self.o = theObservation
self.a = theAction

class Reward_observation_terminal:
def __init__(self,reward, theObservation, terminal):

self.r = reward
self.o = theObservation
self.terminal = terminal

class Reward_observation_action_terminal:
def __init__(self,reward, theObservation, theAction, terminal):

self.r = reward
self.o = theObservation
self.a = theAction
self.terminal = terminal

The full definition are available in types.py.

5.2 Functions

5.2.1 Agent Functions

All agents should implement rlglue.agent.Agent.

13

http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Python/src/rlglue/types.py
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Python/src/rlglue/agent/Agent.py

5.2.2 Environment Functions

All environments should implement rlglue.environment.Environment.

5.2.3 Experiments Functions

All experiments can call the methods in rlglue.RLGlue. In this case we’ll include their prototypes,
because the source file is full of implementation details.

() -> string
def RL_init():

() -> Observation_action
def RL_start():

() -> Reward_observation_action_terminal
def RL_step():

() -> void
def RL_cleanup():

(string) -> string
def RL_agent_message(message):

(string) -> string
def RL_env_message(message):

() -> double
def RL_return():

() -> int
def RL_num_steps():

() -> int
def RL_num_episodes():

(int) -> int
def RL_episode(num_steps):

14

http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Python/src/rlglue/environment/Environment.py
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Python/src/rlglue/RLGlue.py

6 Changes and 2.x Backward Compatibility

There were many API/Interface changes from RL-Glue 2.x to RL-Glue 3.x. For those that are at the
level of the API and project organization, please refer to the the RL-Glue overview documentation.

6.1 Agent/Environment Loading

Historically, there was a different approach for loading agents and environments.

The old strategy was:

>$ python -c \"import rlglue.agent.AgentLoader\" agentName

That didn’t seem as easy as it should be, so we changed things for this release, much like we did
in the Java codec. Now, Python agents and environments can become self loading by adding a bit
of code at the bottom of their source files, like:

#skeleton_agent.py
#top of file
from rlglue.agent import AgentLoader as AgentLoader

...

#bottom of file
if __name__=="__main__":

AgentLoader.loadAgent(skeleton_agent())

Now, (as you recall) we can load the agent like:

>$ python agentfile.py

See skeleton environment for instructions about how to do a similar thing for environments.

We feel that this is a useful step forward, and will be encouraging this approach.

7 Frequently Asked Questions

We’re waiting to hear your questions!

15

http://rl-glue.googlecode.com/svn/trunk/docs/html/index.html

7.1 Where can I get more help?

7.1.1 Online FAQ

We suggest checking out the online RL-Glue Python Codec FAQ:
http://glue.rl-community.org/Home/Extensions/python-codec#TOC-Frequently-Asked-Questions

The online FAQ may be more current than this document, which may have been distributed some
time ago.

7.1.2 Google Group / Mailing List

First, you should join the RL-Glue Google Group Mailing List:
http://groups.google.com/group/rl-glue

We’re happy to answer any questions about RL-Glue. Of course, try to search through previous
messages first in case your question has been answered before.

8 Credits and Acknowledgements

Mark Lee originally wrote the Python codec. Thanks Mark.

Brian Tanner has since grabbed the torch and has continued to develop the codec.

Jose Antonio Martin H. was kind enough to create the current task spec parser. Thanks!

James Bergstra added a bit of NumPy magic to get the Python codec speed comparable to the
other languages. Thanks James.

8.1 Contributing

If you would like to become a member of this project and contribute updates/changes to the code,
please send a message to rl-glue@googlegroups.com.

Document Information

Revision Number: $Rev: 613 $
Last Updated By: $Author: brian@tannerpages.com $
Last Updated : $Date: 2009-02-05 00:28:23 -0700 (Thu, 05 Feb 2009) $
$URL: https://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Python/docs/PythonCodec.tex $

16

http://glue.rl-community.org/Home/Extensions/python-codec#TOC-Frequently-Asked-Questions
http://groups.google.com/group/rl-glue

	Introduction
	Software Requirements
	Getting the Codec
	Installing the Codec
	setup.py
	The no-install install

	Sample Project
	Skeleton Agent
	Skeleton Environment
	Skeleton Experiment
	Running All Three Components Together
	Going Further -- Mines Sarsa Example Project
	Sample-Mines-Environment
	Samples-Sarsa-Agent
	Sample-Experiment

	Who creates and frees memory?
	Advanced Features
	Task Specification Parser
	Connecting on custom ports to custom hosts

	Codec Specification Reference
	Types
	Simple Types
	Structure Types

	Functions
	Agent Functions
	Environment Functions
	Experiments Functions

	Changes and 2.x Backward Compatibility
	Agent/Environment Loading

	Frequently Asked Questions
	Where can I get more help?
	Online FAQ
	Google Group / Mailing List

	Credits and Acknowledgements
	Contributing

