RL-Glue Matlab Codec 1.03 Manual

Brian Tanner :: brian@tannerpages.com

Contents

(1 __Introduction|

1.1 Sottware Requirements| . .

[1.2 Getting the Codec|

[1.3 Installing the Codecd| . . .

[1.4 Removing the Coded| . . .

2 Sample Project|

2.1 Skeleton Agent|

2.3 Skeleton Experiment| . . .

2.4 Running All Three Components Together|

[2.5 Notes on Running Agents, Environments, and Experiments Together|

2.6 Going Further — Mines Sarsa Example Project|

[2.6.1 Sample-Mines-Environment|o o000

[2.6.2 Samples-Sarsa-Agent|.

[2.6.3 Sample-Experiment|

[3 Who creates and frees memory?|

[4__Advanced Features|

4.1 Task Specification Parser|

10

10

10

10

11

11

4.2 Connecting on custom ports to custom hosts| 11

[6 Codec Specification Reference 12
H.1 DES| « o e e e e e e e e e e e 12
b.1.1 Simple Types| 12

.1.2 Structure Types| e 13

b2 Functionsl 13
5.2.1 Agent Functions| 13

b.2.2 Environment Functionsl oo 13

5.2.3 Experiments Functions|. oo oo o 14

[6 Frequently Asked Questions| 14
6.1 Where can I get more help?| o oo o 14
[6.1.1 Online FAQ| 14

[6.1.2 Google Group / Mailing List| 14

[7 Credits and Acknowledgements| 14
(7.1 Contributing] e 14

1 Introduction

This document describes how to use the Matlab RL-Glue Codec, a software library that provides
socket-compatibility with the RL-Glue Reinforcement Learning software library. Matlab is a brand
new codec, created specifically for the RL-Glue 3.0 release. Special thanks (or pokes) should go to
Dale, Doina, and Yaki who gave voices to the countless others who probably have scorned us for
not supporting Matlab earlier. It turned out to not even be that difficult :)

For general information and motivation about the RL-Glueﬂ project, please refer to the documen-
tation provided with that project.

This codec will allow you to create agents, environments, and experiment programs in Matlab.

"http://glue.rl-community.org/

http://glue.rl-community.org/

This software project is licensed under the Apache—2.(f]license. We're not lawyers, but our intention
is that this code should be used however it is useful. We’d appreciate to hear what you’re using it
for, and to get credit if appropriate.

This project has a home here:
http://glue.rl-community.org/Home/Extensions/matlab-codec

1.1 Software Requirements

To run agents, environments, and experiments created with this codec, you will need to have RL-
Glue executable socket server (rl_glue(.exe)) installed on your computer. It is available in several
packages at:

http://code.google.com/p/rl-glue-ext/wiki/RLGlueCore

Compiling and running components with this codec requires Matlab. The codec was developed on
Matlab 7.6.0.x, it has not been tested extensively on other versions. Reports from the community
suggest that Matlab 7.5 or higher is required to run this codec.

This Matlab codec uses the RL-Glue Java Extension, which means that Matlab needs to be running
with the Java Virtual Machine enabled (it is by default). The Java extension does not need to be
installed independently.

Possible Contribution: Someone with Matlab experience could help us find out what exact
version of Matlab is required to use this codec, and could help us update the codec to be as robust
as possible to older versions.

1.2 Getting the Codec

The codec can be downloaded either as a .tar.gz or can be checked out of the subversion repository
where it is hosted.

The .tar.gz distribution can be found here:
http://code.google.com/p/rl-glue-ext/wiki/Matlab

To check the code out of subversion:
svn checkout http://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Matlab Matlab-Codec

1.3 Installing the Codec

This codec is package with a Matlab “installer” which copies the codec source files and the RL-Glue
Java Extension JAR file to a user-configurable location and adds them to your Matlab path and
Matlab Java classpaths. This is the recommended way of using the codec. Alternatively, you can

*nttp://wuw.apache.org/licenses/LICENSE-2.0.html

http://glue.rl-community.org/Home/Extensions/matlab-codec
http://code.google.com/p/rl-glue-ext/wiki/RLGlueCore
http://code.google.com/p/rl-glue-ext/wiki/Matlab
http://www.apache.org/licenses/LICENSE-2.0.html

skip the installer and setup these paths on your own. This manual will assume that you are using
the installer.

To run the installer, use the installRLGlue () function from within Matlab in the main directory
of the package you downloaded. This will suggest installing Matlab to your home directory at
“/rl-glue/codecs/matlab. If you would prefer an alternate location, you can call the function
with a path, like:

>>installRLGlue(’~/desired/path/to/codec’)

1.4 Removing the Codec

The Matlab codec can be uninstalled by deleting the directory that you installed it
(eg. ~/rl-glue/codecs/matlab), and using the Matlab path editor to remove the associated
directories from your path.

2 Sample Project

We have included two example projects with this codec, located in the examples directory. Each
project contains an agent, environment, and experiment written for this Matlab codec. The two
projects are skeleton and mines-sarsa-sample.

The skeleton contains all of the bare-bones plumbing that is required to create an agent / envi-
ronment / experiment with this codec and might be a good starting point for creating your own
components.

The mines-sarsa-sample contains a fully functional tabular Sarsa learning algorithm, a discrete-
observation grid world problem, and an experiment program that can run these together and gather
results. More details below in Section 2.6

In the following sections, we will describe the skeleton project. Running and using the mines-sarsa-sample
is analogous.

2.1 Skeleton Agent

We have provided a skeleton agent with the codec that is a good starting point for agents that you
may write in the future. It implements all the required functions and provides a good example of
how create and run a simple agent.

There are several functions that need to be written. They are all contained in a single Matlab
source file:

examples/skeleton/skeleton_agent.m

The skeleton_agent.m file has a public function that returns a structure with function pointers
to all of the required RL-Glue functions. The structure looks like this:

>> theAgent=skeleton_agent ()
theAgent =

agent_init: @skeleton_agent_init
agent_start: O@skeleton_agent_start
agent_step: @skeleton_agent_step
agent_end: @skeleton_agent_end
agent_cleanup: @skeleton_agent_cleanup
agent_message: @skeleton_agent_message

Alternatively, these different functions could each be in their own skeleton_agent_{init, start,
step, end, cleanup, message} .m files. This is a personal choice.

This agent does not learn anything and randomly chooses integer action 0 or 1.
You can compile and run the agent like:
>$ cd examples/skeleton

>$ theAgent=skeleton_agent();
>$ runAgent (theAgent) ;

skeleton_agent ()| creates a struct with function pointers to the other skeleton_agent meth-
ods. [runAgent (theAgent)| then connects to RL-Glue and runs one step at a time until RL-Glue
disconnects.

Alternatively, for a more interactive experience, you can run the agent manually one step at a time:

>$ cd examples/skeleton/
>$ theAgent=skeleton_agent ()
>$ connectAgent (theAgent) ;

>$ runAgentLoop(theAgent) ; %run one step
>$ runAgentLoop(theAgent); %run one step
>$ runAgentLoop(theAgent); %run one step

Using this method, you can stop and examine what your agent is learning, and potentially modify,
visualize, or analyze it however you like.

You will see something like:

http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/examples/skeleton/skeleton_agent.m
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/src/agent/runAgent.m

>> runAgent (theAgent)
RL-Glue Matlab Agent Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: localhost on port 4096

This means that the skeleton_agent is running, and trying to connect to the rl_glue executable
server on the local machine through port 4096!

You can kill the process by pressing CTRL-c on your keyboard.

The Skeleton agent is very simple and well documented, so we won’t spend any more time talking
about it in these instructions. Please open it up and take a look.

2.2 Skeleton Environment

We have provided a skeleton environment with the codec that is a good starting point for environ-
ments that you may write in the future. It implements all the required functions and provides a
good example of how to compile a simple environment. This section will follow the same pattern
as the agent version (Section [2.1]). This section will be less detailed because many ideas are similar
or identical.

The pertinent file is:
examples/skeleton/skeleton_environment.m

This environment is episodic, with 21 states, labeled {0,1,...,19,20}. States {0,20} are terminal
and return rewards of {—1,+1} respectively. The other states return reward of 0. There are two
actions, {0,1}. Action 0 decrements the state number, and action 1 increments it. The environment
starts in state 10.

You can compile and run the environment like:

>$ cd examples/skeleton
>$ theEnv=skeleton_environment();
>$ runEnvironment (theEnv) ;

You will see something like:

RL-Glue Matlab Environment Codec Version: 1.0 ($Revision: 688 §)
Connecting to rl_glue at host: localhost on port 4096

This means that the skeleton_environment is running, and trying to connect to the rl_glue exe-
cutable server on the local machine through port 4096!

You can kill the process by pressing CTRL-c on your keyboard.

The Skeleton environment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.3 Skeleton Experiment

We have provided a skeleton experiment with the codec that is a good starting point for experiments
that you may write in the future. It implements all the required functions and provides a good
example of how to compile a simple experiment. This section will follow the same pattern as the
agent version (Section [2.1)). This section will be less detailed because many ideas are similar or
identical.

The pertinent files are:
examples/skeleton/skeleton_experiment.m

This experiment runs RL_Episode a few times, sends some messages to the agent and environment,
and then steps through one episode using RL_step.

>$ cd examples/skeleton
>$ skeleton_experiment();

You will see something like:

Experiment starting up!
RL-Glue Matlab Experiment Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: 127.0.0.1 on port 4096

This means that the skeleton_experiment is running, and trying to connect to the rl_glue exe-
cutable server on the local machine through port 4096!

You can kill the process by pressing CTRL-c on your keyboard.

The Skeleton experiment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.4 Running All Three Components Together

At this point, we’ve run each of the three components, now it’s time to run them with the rl_glue
executable server. As of version 1.03, the Matlab codec supports running any combination of agent,
environment, and experiment, all from a single Matlab instance. Note that although they are all
in Matlab, they are still running over a local network connection to talk to the r1_glue executable
socket server. In a future version, we may provide a local RL-Glue implementation so that they

can work together without needing sockets. This capability already exists in both the RLGlueCore
project for C/C++ and the RL-Glue Java Extension codec.

The following will work if you have the r1_glue socket server is installed at /usr/local/bin/rl_glue.

We will run all of the components in the Matlab interpreter. Alternatively, it may be convenient
to run rl_glue in a terminal window of its own. In the Matlab interpreter:

>> cd examples/skeleton

%Start the rl_glue socket server as a background process
>> ! /usr/local/bin/rl_glue &

>> runAllTogether();

If RL-Glue is not installed in the default location, you’ll have to start the r1_glue executable server
using its full path (unless it’s in your PATH environment variable):

>> /path/to/rl-glue/bin/rl_glue &

In the Matlab window, you should see the following if it worked:

>> runAllTogether

RL-Glue Matlab Agent Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: 127.0.0.1 on port 4096

Agent Codec Connected

RL-Glue Matlab Environment Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: 127.0.0.1 on port 4096
Environment Codec Connected

RL-Glue Matlab Experiment Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: 127.0.0.1 on port 4096
Experiment Codec Connected

Experiment starting up!

RL_init called, the environment sent task spec: VERSION RL-Glue-3.0
PROBLEMTYPE episodic DISCOUNTFACTOR 1.0 OBSERVATIONS INTS (0 20)
ACTIONS INTS (0 1) REWARDS (-1.0 1.0)

EXTRA skeleton_environment(Matlab) by Brian Tanner.

Agent responded to ’what is your name?’ with:

my name is skeleton_agent, Matlab edition!

Agent responded to ’If at first you don’t succeed; call it version 1.0 ’
with: I don\’t know how to respond to your message

Environment responded to ’what is your name?’ with:

my name is skeleton_environment, Matlab edition!

Environment responded to ’If at first you don’t succeed;
call it version 1.0 ’ with:
I don\’t know how to respond to your message

Episode 0 48 steps -1.000000 total reward natural end 1
Episode 1 100 steps 0.000000 total reward natural end O
Episode 2 74 steps -1.000000 total reward natural end 1
Episode 3 34 steps -1.000000 total reward natural end 1
Episode 4 100 steps 0.000000 total reward mnatural end O
Episode 5 1 steps 0.000000 total reward natural end O

Episode 6 70 steps 1.000000 total reward mnatural end 1

First observation and action were: 10 and: 1

It ran for 86, total reward was: -1.000000

Congratulations, you have run an RL-Glue agent / environment / experiment together, all using
the Matlab codec!

2.5 Notes on Running Agents, Environments, and Experiments Together

There is a function called runRLGlueMultiExperiment| that facilities running any combination of
agent, environment, and experiment together within Matlab.

This function takes a struct as a parameter, and the struct can have any combination of the
following three fields set (at least one should be set):

agent An agent struct, like the one that is created by skeleton_agent.

environment An environment struct, like the one that is created by skeleton_environment.
experiment An experiment function pointer, like @skeleton_experiment.

As long as you set one more of these fields, then you can call runRLGlueMultiExperiment and the

Matlab codec will make sure that everything gets called when it needs to. Don’t forget to make sure
you run any components that you don’t specify with another codec or another Matlab instance!

http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/src/runRLGlueMultiExperiment.m

2.6 Going Further — Mines Sarsa Example Project

The skeleton sample project is extremely limited and only shows the mechanics of how RL-Glue
components are structured using the Matlab codec. The mines-sarsa sample project is much
richer.

More details about the mines-sarsa sample project can be found at their RL-Library home:
http://library.rl-community.org/packages/mines-sarsa-sample

2.6.1 Sample-Mines-Environment

The mines environment, is internally a two-dimensional, discrete grid world where the agent receives
a penalty per step until reaching a goal state, hopefully without stepping on any exploding land-
mines along the way. The (x,y) state is flattened into a discrete, scalar observation for the agent.
This environment can receive special messages from the experiment program to print the current
state to the screen, and also to toggle between random starting states and a fixed starting-state
specified by the experiment.

The task specification stringﬁ] is created in a semi-automated way using the Java RL-Glue Extension
task spec parser/builder.

2.6.2 Samples-Sarsa-Agent

The SARSA agent| is a tabular learning agent that uses € — greedy exploration as described in
Reinforcement Learning: An Introduction by Sutton and Barto.

The SARSA agent parses the task specification string using the Java RL-Glue Extension task spec
parser. This agent can receive special messages from the experiment program to pause/unpause
learning, pause/unpause exploring, save the current value function to a file, and load the the value
function from a file.

2.6.3 Sample-Experiment

The sample experiment program runs the show. First, it alternates running the agent in the
environment for a number of episodes, and telling the agent to pause learning so that the current
performance can be evaluated. These results are plotted with error-bars in a Matlab figure.

The sample experiment then tells the agent to save the value function to a file, and then resets the
experiment (and agent) to initial conditions. After verifying that the agent’s initial policy is bad,
the experiment tells the agent to load the value function from the file. The agent is evaluated again
using this previously-learned value function, and performance is dramatically better.

3http://glue.rl-community.org/Home/rl-glue/task-spec-language

10

http://library.rl-community.org/packages/mines-sarsa-sample
http://code.google.com/p/rl-library/source/browse/trunk/projects/packages/examples/mines-sarsa-matlab/sample_mines_environment.m
http://code.google.com/p/rl-library/source/browse/trunk/projects/packages/examples/mines-sarsa-matlab/sample_sarsa_agent.m
http://www.cs.ualberta.ca/~sutton/book/ebook/node64.html
http://glue.rl-community.org/Home/rl-glue/task-spec-language

Finally, the experiment sends a message to specify that the environment should use a fixed (instead
of random) starting state, and runs the agent from that fixed start state for a while.

3 Who creates and frees memory?

The RL-Glue technical manual has a section called Who creates and frees memory?. The general
approach recommended there is to make a copy of data you want to keep beyond the method it was
given to you. The same rules of thumb from that manual should be followed when using the Matlab
codec. The observations and actions can be copied using the same techniques as the RL-Glue Java
Extension.

4 Advanced Features

4.1 Task Specification Parser

As of fall 2008, we’ve updated the task specification language:
http://glue.rl-community.org/Home/rl-glue/task-spec-language

The Matlab codec uses the task spec parser implementation from the RL-Glue Java Extension.
This task spec parser/builder can be used in environments to create task specification strings for
env_init. The sample mines environment in Section [2.6.1] provides an example of creating a task
spec in this way. There are also several advanced examples of this in the RL-Libraryﬂ The task
spec parser/builder can also be used by agents to decode the task spec string for agent_init. The
sample sarsa agent in Section demonstrates how to do this.

4.2 Connecting on custom ports to custom hosts

This section will explain how to set custom target IP addresses (to connect over the network) and
custom ports (to run multiple experiments on one machine or to avoid firewall issues). Sometimes
you will want run the rl_glue server on a port other than the default (4096) either because of
firewall issues, or because you want to run multiple instances on the same machine.

In these cases, you can tell your Matlab agent, environment, or experiment program to connect
on a custom port and/or to a custom host using the RL_set_port() and RL_set_host() Matlab
functions.

For example, the following code:

>> RL_set_port (4097);

4http://library.rl-community.org

11

http://glue.rl-community.org/Home/Extensions/java-codec
http://glue.rl-community.org/Home/Extensions/java-codec
http://glue.rl-community.org/Home/rl-glue/task-spec-language
http://library.rl-community.org

>> RL_set_host(’yahoo.ca’)
>> cd examples/skeleton
>> skeleton_experiment () ;

That command could give output like:

RL-Glue Matlab Experiment Codec Version: 1.0 ($Revision: 688 $)
Connecting to rl_glue at host: yahoo.ca on port 4097

This works for agents, environments, and experiments. In practice though, remember that yahoo.ca
probably isn’t running an RL-Glue server.

You can specify the port, the host, neither, or both. Ports must be numbers, hosts can be hostnames
or ip addresses. Default port value is 4096 and host is 127.0.0.1.

Remember, on most *nix systems, you need superuser privileges to listen on ports lower than
1024, so you probably want to pick one higher than that.

5 Codec Specification Reference

This section will explain how the RL-Glue types and functions are defined for the Matlab codec.
This isn’t meant to be the most exciting section of this document, but it will be handy.

Since the Matlab is built on top of the Java codec, many of the underlying data structures are from
the Java codec. We recommend checking out the Java documentation (PDF) (HTML) (JAVADOC)
for more information.

5.1 Types
5.1.1 Simple Types

Unlike the C/C++ codec, we will not be using typedef statements to create special labels for the
types. Since Matlab is loosely typed, these things aren’t so hard and fast:
e reward is double

e terminal is int (1 for terminal, O for non-terminal) We hope to replace these with boolean
eventually.

e messages come as Java strings and can be returned as Matlab strings

o task specifications come as Java strings and can be returned as Matlab strings

12

http://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Java/docs/JavaCodec.pdf
http://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Java/docs/html/index.html
http://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Java/javadocs/index.html

5.1.2 Structure Types

All of the major structure types (observations, actions) come off the network as the appropriate
object from the Java codec. The Java codec manual should have all the information required to
understand those objects.

So in a given Matlab method, like
function theAction=skeleton_agent_step(theReward, theObservation), theObservation is
actually of type: org.rlcommunity.rlglue.codec.types.0Observation.

Java and Matlab play very well together, so you can do things like:

>> testObs=org.rlcommunity.rlglue.codec.types.0Observation() ;
>> testObs.intArray=[1 2 3 4];

>> testObs.doubleArray=[0.1 0.5];

>> testObs.charArray="fun things!’;
>> test0Obs.toString()

numInts: 4
numDoubles: 2
numChars: 11
12340.10.5fun things!

5.2 Functions
5.2.1 Agent Functions

All agent constructor functions should set the same functions as our [Skeleton agentl

Useful utility methods for connecting, disconnecting, and running with the rl_glue executable
server are in the |agent directory of the Matlab codec source.

5.2.2 Environment Functions

All environment constructor functions should set the same functions as our |Skeleton environmentl.

Useful utility methods for connecting, disconnecting, and running with the rl_glue executable
server are in the environment|directory of the Matlab codec source.

13

http://glue.rl-community.org/Home/Extensions/java-codec
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/examples/skeleton/skeleton_agent.m
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/src/agent
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/examples/skeleton/skeleton_environment.m
http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/src/environment

5.2.3 Experiments Functions

All experiments can call the methods in the |glue| directory. In this case we’ll include their
prototypes, because the source file is full of implementation details.

6 Frequently Asked Questions

We’re waiting to hear your questions!

6.1 Where can I get more help?
6.1.1 Online FAQ

We suggest checking out the online RL-Glue Matlab Codec FAQ:
http://glue.rl-community.org/Home/Extensions/matlab-codec#TOC-Frequently-Asked-Questions

The online FAQ may be more current than this document, which may have been distributed some
time ago.

6.1.2 Google Group / Mailing List

First, you should join the RL-Glue Google Group Mailing List:
http://groups.google.com/group/rl-glue

We’re happy to answer any questions about RL-Glue. Of course, try to search through previous
messages first in case your question has been answered before.

7 Credits and Acknowledgements

Brian Tanner wrote the Matlab codec. He is also responsible for creating the installer, which is
pretty nifty. Yay Brian.

7.1 Contributing

If you would like to become a member of this project and contribute updates/changes to the code,
please send a message to rl-glue@googlegroups.com.

14

http://code.google.com/p/rl-glue-ext/source/browse/trunk/projects/codecs/Matlab/src/glue
http://glue.rl-community.org/Home/Extensions/matlab-codec#TOC-Frequently-Asked-Questions
http://groups.google.com/group/rl-glue

Document Information

Revision Number: $Rev: 688 $

Last Updated By: $Author: brian@tannerpages.com $

Last Updated : $Date: 2009-02-09 12:13:44 -0700 (Mon, 09 Feb 2009) $

$URL: https://rl-glue-ext.googlecode.com/svn/trunk/projects/codecs/Matlab/docs/MatlabCodec.tex

15

	Introduction
	Software Requirements
	Getting the Codec
	Installing the Codec
	Removing the Codec

	Sample Project
	Skeleton Agent
	Skeleton Environment
	Skeleton Experiment
	Running All Three Components Together
	Notes on Running Agents, Environments, and Experiments Together
	Going Further -- Mines Sarsa Example Project
	Sample-Mines-Environment
	Samples-Sarsa-Agent
	Sample-Experiment

	Who creates and frees memory?
	Advanced Features
	Task Specification Parser
	Connecting on custom ports to custom hosts

	Codec Specification Reference
	Types
	Simple Types
	Structure Types

	Functions
	Agent Functions
	Environment Functions
	Experiments Functions

	Frequently Asked Questions
	Where can I get more help?
	Online FAQ
	Google Group / Mailing List

	Credits and Acknowledgements
	Contributing

